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The Role of the Asymptotic Equipartition
Property in Noiseless Source Coding

Sergio Verd, Fellow, IEEE and Te Sun Hankellow, IEEE

Abstract—The (noiseless) fixed-length source coding theorem sources. Within that setting, the AEP turns out to be equivalent
states that, except for outcomes in a set of vanishing probability, to the equality of the minimum achievable source-coding rates
a source can be encoded at its entropy but not more efficiently. in fixed-length coding and in variable-length coding. For more

It is well known that the Asymptotic Equipartition Property . . . "
(AEP) is a sufficient condition for a source to be encodable at general information sources, the AEP is a necessary condition

its entropy. This paper shows that the AEP isnecessanyfor the  for the validity of thestrongsource coding theorem (in which
source coding theorem to hold for nonzero-entropy finite-alphabet  the probability of error of any code with rate below the entropy
sources. Furthermore, we show that a nonzero-entropy finite- goes tol). We show that any source that satisfies the strong
alphabet source satisfies the direct coding theorem if and only if ¢y erse must also satisfy the direct part. For nonzero-entropy
it satisfies the strong converse. In addition, we introduce the more finite-alphabet how that the th K
general setting of nonserial information sources which need not _'n' e-alpha e_ §ources, we show that the the (We.a ) C‘?”Yers_e
put out strings of symbols. In this context, which encompasses IS always satisfied and that the strong converse is satisfied if
the conventional serial setting, the AEP is equivalent to the and only if the direct part is satisfied.
validity of the strong coding theorem. Fundamental limits for data Showing that the AEP is equivalent to the validity of the
compression of nonserial information sources are shown based on source coding theorem reinforces the prominent role played by
the flat-top property—a neYV Sumc_'em .c-ondmon for the AEP. the AEP in information theory, which is due to the insight it
~ Index Terms— Asymptotic equipartition property, entropy,  offers into the behavior of information sources as well as the
fixed-length source coding, noiseless data compression, Shannoqact that it is generally much easier to verify whether the AEP
theory, source coding theorem. .
holds for a particular source than to check whether the source
can be encoded at its entropy but not more efficiently. It is
I. INTRODUCTION somewhat surprising that the full role of the AEP in noiseless

HE minimum averagelength of a uniquely decodabledata compression had not been discovered before. A key step

variable-lengthbinary code for an arbitrary random 0b_in our results is to show that the classical statement of the

ject is equal to its entropy plus at most one bit. In contrast P IS redundant, in the sense that the property is equivalent
the generality of this result on the minimum expected lengfl the probability of the set of atypically big masses vanishing
of variable-length coding, the stronger result fxed-length 2Symptotically. _ _
source coding requires to 1) place some conditions on the OF the most part, the development will proceed without
source and 2) focus on asymptotics, in order to conclude tRARCING any assumptions on the allowed class of information
all source strings outside an event of vanishing probabili§Purces. We even allow a generalization of the conventional
are optimally encoded at the source entropy. This is satisfiegtting, where the source does not necessarily output a string
by stationary/ergodic sources but not necessarily by otHdrSymbols. We refer to those sourcesnamserial information
sources; some sources require more, others require less fFRiffcesConsider the following examples of such sources:
the entropy. Typically, theufficient conditioimposed on the 1) an image withn x k(n) pixels;
source so that it can be optimally encoded at its entropy is2) the number of Poisson points with growing mean
the Asymptotic Equipartition Property (AEP}he probability ~ 3) the final value of a random walK; + -+ - + X,,;
of the set ofn-strings whose log-probabilities are roughly 4) the empirical distribution of am-string drawn from a
—H (Z,,---Z,) goes tol asn — oc. finite alphabetA.
The main purpose of this paper is to shed further light onto In each of these examples, the entropy of the information
the role of the AEP in noiseless source coding. We show thedurce grows without bound with although not linearly as
the AEP is not only a sufficient condition for the validityin the case of a conventional serial source. Note that in cases
of the source coding theorem, but it is in facthacessary 2) and 3) a single integer-valued random variable is to be
condition, in the setting of nonzero-entropy finite-alphabeihcoded; whereas in case 4) the information to be encoded is
a vector with fixed dimensiofd|. Such sources fall outside the
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A nonserial information source is characterized by a se-Conversely, those sources which cannot be encoded at any
quence of distribution& = {Z"}, wheren need not have rate smaller than the entropy can be defined as
the connotation of blocklength. Since our emphasis is onDefinition 2: A sourceZ is superentropidf the total mass
noiseless coding, we will require thé&k,, the set on which of its most likely M = exp((1 — 6§)H(Z™)) outcomes does
Z™ takes values, be finitely or countably infinitely valuednot go tol asn — oc for any 6 > 0.

The conventional (serial) setting of a source with alphabet Notice that a source is either subentropic or superentropic
corresponds to the special case wh&eis equal to thenth  (or both). In the conventional terminology, subentropic sources
Cartesian product™. can be viewed as those that satisfy the direct part of the

In Section 1l, we define the main classes of sources weding theorem, whereas superentropic sources are those that
will be concerned with. Those definitions classify informatiosatisfy the converse part. Thus those sources that satisfy both
sources according to whether they can be encoded abdvefinitions 1 and 2 are of major importance:
below, or at the entropy. Several examples illustrate theDefinition 3: A source isentropicif it is both subentropic
various possible behaviors. and superentropic.

Section 1l is devoted to the AEP and, in particular, to Throughout this paper, the exponential and logarithm func-
showing that, in a completely general setting, the AEP t®ns have a common arbitrary basis. If we denote this basis
equivalentto the property that the source is encodable at it/ a, then an entropic source is one for which the most likely
entropy but any code operating below the entropy results éf’(?") outcomes exhaust (respectively, do not exhaust) the
probability of error converging td. Exact asymptotic results probability asymptotically ifa > a (respectively,a <a). A
are obtained under the only assumption that the entropy of ttefinement of the notion of superentropic sources is suggested
object to be encoded is finite and grows without bound. Thiy the strong converse source coding theorem which states
encompasses those single-sample information sources citeat coding below the entropy results in probability of error
above. Stationary ergodic sources satisfy the AEP accordingeéading tol. This is easily captured by the following definition
the Shannon—MacMillan Theorem [2]. Section Il shows thaif a subclass of superentropic sources.
the flat-top property (which proves to be particularly useful for Definition 4: A sourceZ is strongly superentropiif for any
nonserial information sources) is another sufficient conditiait> 0 the total mass of its most likely/ = exp((1-6)H(Z"))
for the AEP. outcomes goes t6 asn — oc.

Section IV focuses on the special, but most important, Definition 5: A source isstrongly entropicif it is both
case of conventional finite-alphabet sources. The additiorsalbentropic and strongly superentropic.
structure of those sources enables the proof of further resulté€ven for simple random processes, it is not easy to char-
which simplify the general picture. In particular, as long aacterize the probability of the set of th& most likely
the entropy ofn-strings grows linearly withn, we establish outcomes wheré/ grows exponentially with the entropy. The
that the AEP is equivalent to the validity of the source codingevelopment of tools in order to classify information sources
theorem. according to the foregoing definitions is a main goal of this

paper. Prior to developing those tools in Theorems 1-13, we
will exhibit several examples in order to gain insight into the
Il. ENTROPIC SOURCES various classes of sources.

For the purposes of examining whether a source can b&xample 1:A stationary ergodic sourcg”= (Xy,---, X,)
encoded below, above, or at its entropy asymptotically, onW/ith finite alphabet is strongly entropic. (This follows from the
those sources such that(Z™) is finite for everyn and grows Shannon-MacMillan Theorem and Theorem 2 in Section lil.)
without bound withn are of interest. This is an underlying Example 2.The following binary serial source is superen-
assumption throughout the paper. However, the growth $®pic but it is neither subentropic nor strongly superentropic:
H(Z™) need not be linear (particularly for nonserial sources)

. , n n_{l—q, 2" =(0,---0)
and we shall make no assumptions in that respect. Recall  P[Z" =z"] = - n
that n is a generic “size” index, which in the special case ¢/(2" = 1), 2" #(0,---0)
of c_onventional serial sources is. equal _to the st_ring length. ¢, any 0 < g < 1. To check this, note that

Fixed-length source codes which assign a unique codeword
to each of thel/ most likely source outcomes (and an “error” H(Z™) = h(q) 4+ qn + qlog,(1 — 27™) 1)
codeword to all other outcomes) achieve the minimum size.

Thus a natural class of information sources are those that egimnere” denotes the binary entropy function. No event whose
be encoded with a codebook whose log-size grows as #ige grows asy* exhausts all the probability asymptotically
entropy. if < 2. Thus the source is not subentropic, and therefore,

Definition 1: A source Z is subentropicif the total mass it is superentropic. The source is not strongly superentropic
of its most likely M = exp((1 + §)H(Z™)) outcome$ (or, a because the event i most likely outcomes has probability
fortiori, any other event with no more thad outcomes) goes at leastl — ¢ for any M > 1. If instead of being constant,
to 1 asn — oo for any 6 > 0. . — 1, then the source becomes strongly entropic.

Example 3: Let ©2,, = {1,---, K,,} with

1The set of theM most likely outcomes is always well-defined (not 5
necessarily uniquely) even §2,, is countably infinite. K, =2"+4+4"
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and define the two-level distribution Example 8 (Randomly Chosen Biased Coiithis is a se-
rial stationary nonergodic binary source. 1t = {H,T}",
(1-1/n)27", k=1,---2" and letZ" = (Z1,---,Z,) be such that with probability,
Pzu(k)=19 1 it is Bernoulli with P[Z; = H] = 8, € (0,3) and with
-~ 47, k=2"+1,--- K. probability 3, it is Bernoulli with P[Z; = H] = 32 € (81, 3).
This source is superentropic but it is neither subentropic nor
The total mass of the outcomés= 1,---,2" is equal to strongly superentropic. The entropy satisfies
1-1/n. Thereforen bits represent the source with vanishingly n n
small probability of error as — oc. On the other hand, the H(Z") = §h(/31) + §h(/32) +0(1) (7)

entropy, in bits, ofZ™ is .
but the most likelyM = exp((1 + §)H(Z™)) outcomes

. on 1 2 fail to exhaust the probability for sufficiently smadl> 0.
H(Z") = <1 - _> log, 77T 510g2(”4 ) This means that the source is not subentropic, so it must
1= n be superentropic. However, the probability of the most likely
=3n+ o(n). (2) M =exp((1-6)H(Z™)) outcomes goes tg for sufficiently

small 6 > 0. Thus the source is not strongly superentropic.

Therefore, this source can be encoded at a rate which ign Example 9 below we show a source which is entropic
one-third of its entropy rate. Thus it is subentropic but ndtut not strongly entropic. The idea is to have a large set of

superentropic. very unlikely outcomes whose overall probability vanishes
Example 4: The Poisson source with meap, with ,, — but which contributes significantly to the entropy, while at
50 @SN — 0o the same time have a single large nonvanishing mass which
prevents the source from being strongly entropic. The fact
Pao(k) = e & E=0.1.2 ... 3) that the source in Exa.mple 9 ha}s a numb.er of outcomes v_vhich
k!’ T grows superexponentially with is not accidental, as we will

. _ ) see in Section IV.
As we emphasized before, only one integer value is .to beExampIe 9: The source has three types of outcomes:
encoded. The entropy df™ grows aslog+/\,. We show in 1) one mass with probabilit)};

Theorem 6 that this source is strongly entropic. n . . .
Example 5: The geometric distribution with parameter 2) 2" masses each with probab|l|t)§ = 1/n)27"

0<a, <1 3) (1/n)2"°/2 masses each with probabiligy /2.
The entropy of this source satisfies
Pz(k)=(1=ay)ak, k=0,1,2---. 4) H(Z™
lim =1 bit.

n—oo n

Its entropy is
To check that the source is indeed subentropic note that for all

1 an 1 6 > 0, the most likely2"(1+%) masses have probability greater
H(Z") = log . 5 ' .
(27) = log l—a, 1l—a, log an ®) than1 — 1/n. On the other hand, the most likef(1=%) + 1

masses have probability
If a, — 1 asn — oo, then H(Z,) — oo. It is shown in

Theorem 7 that this source is strongly entropic. In fact, it is 1 + <1 1>2—n6
easy to show directly that this source is entropic upon noticing 2 2 n

that the residual probability (not covered by themost likely
outcomes) isa.

We show next two common examples of nonserial infor-
mation sources derived from a conventional independent an
identically distributed (i.i.d.) source.

Example 6: Let { X1, X2, -} be i.i.d. taking values on a ] "
finite setA. Under{some condi}tions on the distribution f, Theorem 1:Let Z* take values on the sél,. If
it is shown in Section Ill thaZ™ = X +---+ X, is strongly ) H(Z™)

. lim sup
entropic. n—oo 10g {2y

Example 7: Let {X;, X2,---} be i.i.d. taking values on a
finite set A. The empirical distribution of( Xy,---,X,) is
defined as thé.A|-dimensional random vector

which goes t(} asn — oo. Thus this source is superentropic
but not strongly superentropic.

d:or many sources (in particular, serial finite-alphabet
sources), an easy way to check the validity of the converse of
the source coding theorem is the following.

>0 (8)

then the sourc& is superentropic.
Proof: Let us define an encoder for the source which
is the identity mapping for théZ most likely outcomes and

1 assigns a unique element to all the other outcomes. The output
Qx,..x,(a) == Z HX; =al, a € A. (6) of the encoder t&Z™ will be denoted byZ". Note that thel/
et most likely outcomes asymptotically exhaust all the probability
f and only if

As we will show, this nonserial source is strongly entropic and X
can be encoded with|A| — 1) log v/ bits. Pz™ £ 27 — 0.
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In order to lower-bound the error probability we can usmeoticed by Shannon [8, Appendix Ill] in the context of i.i.d.

Fano’s inequality [2] sources) summarizes the classical role of the AEP.
R 1 ) Theorem 2: A source that satisfies the AEP is strongly
PlZ" # 27 > oz [ |[H(Z") —I(Z"Z") —log 2] entropic.
& i Proof: (AEP = Subentropic).The cardinality of the
H(Z") [ _logM+1)  log2 | (9) event(, — S,(8) (the set of masses that are not atypically
~ log [, H(zn) H(zn) small) is upper-bounded byxp((1 + §)H(Z"™)), and its
Now chooses > 0 and letM = exp((1— §)H(Z™)), then the Probability goes tal because of the AEP. O
right side of (9) is lower-bounded for all sufficiently largeby Proof: (AEP= Strongly Superentropic)Denote the set

of the most likelyexp((1—6)H (Z™)) masses i}, by G, ().

H(z") é Note that a source is strongly superentropic if and only if
log|2,] 2
Thus if the condition of the theorem is satisfied, then the lim  P[G(8)] =0 (11)
probability of error cannot vanish asymptotically, and the
source is superentropic. U for all §>o0.

The sufficient condition in Theorem 1 is not satisfied by | ot ys show that for all§ >0, P[B,(6)] — 0 implies
many superentropic nonserial information sources of intereptEGn(%)] — 0. To that end we examine the probability of

such as those in Examples 4, 5, 9, or any source §ltH = the right side of
oo. Fano’s inequality is not sufficiently powerful to deal with
those sources. A simple alternative condition to deal with those G (28) C By(8) U {G(26) = Bo(6)} (12)

sources will be presented at the end of Section lIl.

The definitions ofB,,(6) and G,,(26) lead to the following
equations, respectively:

In the domain of conventional sources, it is common to
adopt the notion of the Asymptotic Equipartition Property  p[@,,(26) — B,,(6)] < |G,.(28)|exp(—(1 — 6)H(Z™))
(AEP), which is satisfied by stationary ergodic sources accord- < exp(—8H(ZM)) (13)
ing to the Shannon—Macmillan Theorem [2]. The definition of -

the AEP can be immediately extended to any finite-entropy

information source (serial or nonserial; with finite or infiniteWhere the right side vanishgs because of the underlying
Q). assumption that (Z™) grows without bound. Thus (12), (13),

and P[B,,(6)] — 0 lead to P[G,,(26)] — 0 as desired. O

Definition 6: A sourceZ satisfies the AEK the outcomes s o s
whose log-probabilities differ from-H(Z"™) by no more than We will strengthen significantly the classical Theorem 2 by
§howing that not only the AEP is a sufficient condition for

6H(Z™), exhaust all the probability asymptotically, no matte

how small§> 0. In other words, the AEP states that for alY Source to be strongly entropic but it is also necessary.
§>0. asn — oo Furthermore, we will show the important observation that the

strong converse implies the direct part of the source coding
P[B,(6)] = 0 and P[S,(6)]—0 theorem. In the proof of Theorem 2 we saw that a sufficient
condition for a source to be subentropic (respectively, strongly
superentropic) is that the probability of the event of atypically
small (respectively, big) masses vanish. To show that the

[ll. ASYMPTOTIC EQIPARTITION PROPERTY (AEP)

where the subsets of “atypically big” and “atypically small’
probability masses are denoted by

B (8) = {w € Qp: Pzn(w) > exp(=(1 = ) H(Z™))} AEP is a necessary condition it is instrumental to prove
that its classical statement (Definition 6) is redundant: if
and the event of atypically big masses has vanishing probability,
_ . n then, necessarily, the event of atypically small masses must
Sp(6) ={w € Qp: Pzn(w) < —(1+6H(Z L .
(8) ={w 7 (w) < exp(=(1+6)H(Z7)} also have vanishing probability (regardless of how we gauge
respectively. typicality). Thus the absolute value in (10) is unnecessary.

The dissection of the set of atypical probability masses infven in the context of i.i.d. sources, it appears that this is a
atypically big and atypically small will be seen to be cruciahew observation.
for the purposes of this paper. Theorem 3: A sourceZ satisfies the AEP if and only if for

In the special case of conventional serial sources it &l 6 >0
common to state the AEP as

H(ZM) 1
P ~ Zlog———
{ n o EPp(Z7) |
o ) o = lim Pllog ———
for all § > 0. This is equivalent to Definition 6 as long as the n—oo zn (Z7)
limsup andliminf of H(Z™)/n are finite and nonzero.

' T(aditionally, the AEP take; the role of asu'fficient condiFion 2See [5, pp. 42-43] and [3, pp. 16-17] for similar proofs in the context of
in fixed-length source coding. The following result (firsti.d. sources.

>5} o o o TEO)

<(1-8H(ZM| =0. (14)
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SUPER-ENTROPIC

e n -

STATIONARY
ERGODIC

STRONGLY SUPER-ENTROPIC = STRONGLY-ENTROPIC = AEP

ENTROPIC

SUB-ENTROPIC
\_ J

Fig. 1. Classes of information sources.

Proof: We need to show that i’[B,(6)] — 0 for all Note that the only property of the random variables
6> 0, then P[S,,(6)] — 0 for all 6> 0. The idea is to notice log 1/FPz~(Z") used in the proof of Theorem 3 is that
that the contribution of the “big” masses to the entropy ithey are nonnegative and their mean is eventually positive.
negligible if P[B,(§)] — 0. Then, the total probability of =~ We are now in a position to state and prove the following
the “small” masses must go to zero as well, for otherwise tleguivalence:
average oflog 1/Pz»(Z™) would exceedH (Z™). Theorem 4: The following conditions are equivalent for an

Choose arbitrary; > 0 andé» > 0. Recalling the definitions information source:
of B,.(é1) and S, (62) and noticing that they are nonoverlap- a) AEP,

ping sets, we can write b) strongly entropic,

c) strongly superentropic.

1
H(Z™) > > Pgn(w)log Pr(w) Proof: Theorem 2 gives a)> b) and Definition 5 gives b)
wEBE (61)NS5, (62) = ¢). Thus we need to show that€) a). Thanks to Theorem
1 3, it will be enough to show that any strongly superentropic
+ ‘ Sz:é P (w)log Pz (w) source satisfies (14) for afl> 0. But this follows immediately
“En »(82) . . from (cf. proof of Theorem 2 for notation)

2 H(Z")(1 = 6)P[B;(61) N 55(62)]
+ H(Z")(1+ 62)P[Sn(82)] B (6) C Ga(9)

=H(Z")(1 =60l = PBa(81)] = PLSn(8)] which in turn is a consequence of the fact that
+ H(Z")(1 + 62)P[Sn(62)]. (15)

B,(8)] < 1= 8H(Z™M)). O
Eventually, H(Z™) > 0. Thus we may divide (15) by{(Z™) [Ba@)] < expl( JH(Z"))

to yield, after rearranging terms, Fig. 1 shows the classification of sources resulting from the

5 1 — 6\PIB.(§ foregoing results. It also shows a new sufficient condition for
1+ (1= 8)P[Ba(8)] (16) the AEP which is particularly useful for nonserial information
sources:
But no matter how smalf, > 0, the upper bound in (16) is as Definition 7: Denote the infinite-order &yi entropy by
as small as desired for sufficiently largebecause the choice . 1
of §, was arbitrary andP[B,,(6;)] — 0. Thus the proof is Reo(Z") = log Tax Py (@)’
complete. O weom -2

P[Sn(62)] £

61 + 62
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Note thatR..(Z™) < H(Z™) for any Z". A sourceZ is a Proof: The maximum probability mass is locatedkat=
flat-top source if [A\-], and
i Roo(Z™) 1 (17) Ro(Z") = Ay loge — [\ ] log Ay, + log(| A ]!)

n—oo yAL
") Using Stirling’s approximation it can be checked tf&at (Z™)
The termflat top recalls the asymptotic shape of the probgrows aslog+/),.. Furthermore, it can be checked that the
ability mass function oZ™ in a logarithmic scale when (17) differential entropy bound on discrete entropy [2] yields
is satisfied. H(zm
Theorem 5: A flat-top source satisfies the AEP. lim sup (z") <1

Proof: According to Theorem 3 we just need to check n—oo %108‘ An T

that for anyé >0, (14) is satisfied. In fact, even more canyng the proof is complete in view d..(Z") < H(Z"). O

be shown: under the flat-top property eventually there are Nnotnegrem 7: The geometric distribution (Example 5) with
atypically big masses. According to (17), for all sufficientlyfneanan/(l — a,) — oo is flat-top and

large n

1

_an'

R (Z") =log

5 (18)
H(Z") < <1 + §>ROO(Z").
Proof: The expression foR..(Z™) follows immediately

Therefore, for those,, we have from (4). Furthermore, using (5) it can be checked that

H(Z"
1 " lim # =1. (29)
Plos i s 0 -0 e
< P[log ﬁ < <1 + g>(1 - 6)ROO(Z")} Therefore, the geometric source is flat-top as long,as- 1
70 (27) whenn — co. O
< p{log bt < <1 - é)Roo(Z")} ~ Theorem 8: The empirical distribution of a finite alphabet
Pz (Z7) 2 i.i.d. source with distributionPx (Example 7) is flat-top.
=0

i Aeel@Niex) gy HOQnex) o)

where the equality follows from the definition &f..(Z™).00 "7~ (1Al = Dlogv/n  n=ee (A = 1)logv/n
A source of fair coin flips is flat-top. However, a source thawhere|A| is the number of nonzero probability massesia.
satisfies the AEP need not be flat-top, when the most likely proof: For anyn-type distribution(, the probability that
outcomes are not “typical.” the empirical distribution is equal t€ is given by [3, pp. 32,
Example 10 (Biased-Coin Flips)A serial Bernoulli source 39]
with parametet’[Z; = 1] = p> 1/2. It satisfies the AEP, but

it is not flat-top. —log P[Qx,..x, = Q] = nD(Q||Px) + % log n
n 1 1
H(Z") = nh(p) - Z log —— +n(n,Q)
2 a:Q(a)>0 Q(a)
and (21)
Roo(Z™) = nlog(1/p). where w(@) is the number of nonzero masses dh and

n(n, Q) lies in a closed interval independent af and ().

Note that the sequendd, -- -, 1) is not typical, even though The Shannon entropy and the infinite-ordegnii entropy of
it is much more likely to occur than any one of the typicallx,...x, are equal to the average and minimum, respectively,
sequences. of (21) over the set oh-types. In fact, we will only lower-

Accustomed to thinking of the AEP as a property sati®oundR..(Qx,..x, ) and upper-bound (Qx, ...x,, ) since we
fied by stationary ergodic sequences, it may be surprisikgow that
that it is satisfied by many nonserial sources, even single-
sample sources, which at first sight look decidedly not almost- Roo(@xx,x,) < H(Qx,x,)-

equiprobable. In order to illustrate the utility of Theorem 5gjy 5 sufficiently smalle > 0. We will analyze the minimum

we will show that thg nonserial sources in Examples 4-7 ajglue of (21) achievable b according to the following two
flat-top, and thus satisfy the AEP and are strongly entropic¢ases:

Theorem 6: The Poisson source (Example 4) with mean 1) D(Q||Px) > «.

An — 0o satisfies Since for am-type eitherQ(a) = 0 or Q(a) > 1/n, the
Roo(Z7) _ H(zZM right side of (21) can be lower-bounded, in this case, by

lim ———= = lim =1.
n—=oo logh/A,  n—oologyv A, ne — $logn + O(1).
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2) D(Q||Px) £ e Proof:
If we indeed chose to be sufficiently small, then this
case implies that for alk € A E[D(@x,--x.[1Px)]
= Z Z e Z Px(al) . --PX(an)Qal...an(a)
PX(G) aCA a1 CA an€A
Qa) 2
2 Qayoa, (@)
-log “Polay )
because the Csigae-Kullback—Kemperman inequality X
[3, p. 58] dictates that < Z Z
aCA a1 CA
loge ’ Z Px(ay) - 431”'“”(@ -Q (a)| loge
ZEELNT |Py(0) - Q) | < D(QIP). )| T gy T Qavanl)] log
2 a€A an€A

(27)

So the right side of (21) can be lower-bounded by  where we upper-boundeldg » by (» — 1)loge. Straightfor-
ward computations yield

|A] =1 ) 1 2
5 logn — 5 glog Prla) +0O(1). 33 Pe(a) - Px(an)Qayovan (@) = Px(a)  (28)
@ a1 €EA an, €A

Joining the conclusions obtained in both cases we can stafsl

that Z Z PX(al) cee PX(an)QZI~~~an (a)

Re(@xrn) > M en o), @ T
50 L Xn) 2 X0 .
X 2 v _ %Px(a) + <1 - %)P)Q((a). 29)

Let us now upper-bound (Qx, ...x,, ). By definition

The desired result follows by inserting (28) and (29) in the
right side of (27) O
H(QXl"'Xn):_ZP[QXI"'Xn:Q] log PQx,...x, =] We now show that the random walk with independent
Q increments distributed according £ (Example 6) is flat-top,
and thus strongly entropic. Encoding the whole evolution of
the random walkX; +- - -+ X;,¢ = 1,2,---,n, iS equivalent to
where the sum ranges over alttype distributions@. It encoding its increments, which takes (asymptoticatlg)(X)
should be noted that this entropy reflects the randomness in g8 according to classical information theory. The result below
outcome of the empirical distribution; in particular, it is not agnhows that if only the final value of the random walk is to be
average of the entropies of the possible empirical distributior&,codedﬁ log n bits suffice where3 depends on the structure
Expressions (21) and (23) lead to the upper bound of the alphabet.
Theorem 9: Consider the random walk™ = X +---+X,,
Px)]+0(1) where {X;, X5, ---} are independent with identical distribu-
24 tion Py on a finite setd = {a1, -, ax}.
( a) Suppose thatd is incongruent in the sense that the
equation

(23)

A1
2

H(Qx,..x,)< logn+nE[D(Qx,..x,

where the expectation is with respect(t&;,---,X,,). This
average divergence between the empirical and the true dis- miay + -+ +mgag =0
tributions is a quantity of interest in itself: it is equal to the ) ) e
input/output mutual information of an empirical-distribution has no integer solutions satisfyigjZ, m; = 0 other
computer driven by X1, ---, X,,). Using Lemma 1 below we thanmy = --- = mx = 0. Then
see that (24) and (25) result in . Roo(Xi+---+X,)
lim
HX +---+X,

i X))

Together with (22), this concludes the proof of Theoreml8. b) Suppose thatt is alattice (a; = b + m;h, wherem; is

Al -1

H(Qx,..x,) < logn + O(1). (25)

remma it For every an integer). Then
ED(Qx,..x.||Px)] < |A|—_110g6 (26) lim ROO(Xi—F"”—i_X")
X <= ' T e
g O A X)) gy

3Lemma 1 is equivalent to [7, Lemma 1]. We give the proof for complete- n—oo log \/7_1
ness.
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Proof: IV. FINITE-ALPHABET SERIAL SOURCES

a) Inthis case, two sequences with identical sum must haveso far, our results have applied in full generality to serial
identical empirical distribution. Since the converse ignd nonserial sources. We now investigate whether sharper
always true, knowing the value of; +- - -+ X, is equiv- results are possible within the domain of conventional finite-
alent to knowing the empirical distributia@., ...x, and alphabet serial sources. That is, hencefafth takes values on
(30) is given by Theorem 8. thenth Cartesian produd®,, = A", with | 4| < cc. Indeed, the

b) Both the Shannon entropy and the infinite-ord@nfR  general picture in Fig. 1 wil be shown to simplify considerably

entropy are invariant to scaling and shifting. Thus we afgr those sources. Let us first state the following immediate
free to work with the normalized version of the randongorollary to Theorem 1.

walk Theorem 10:A finite-alphabet source with
JA— T LX) hrlln—ilip (n ) >0 (33)
which is known [4, p. 517] to satisfy the central limitiS superentropic.
theorem Note that Theorem 10 gives a rather general converse fixed-
length source coding theorem for conventional serial sources,
ﬂp[zn — - o= /2 by means of a simple proof based on Fano’s inequality (cf.
h V27 proof of Theorem 1).

The reason we will be able to show sharper results for
if z is a possible value o . According to this uniform- conventional finite-alphabet sources is that events with small
convergence result, the largest mass?gftimes\/ﬁ is probability have a small contribution to the normalized entropy

asymptotically upper-bounded biy/v/27. Thus because their cardinality cannot be superexponential. We state
this property in the following simple result.
.. Roo(7n) .. (X1 + -+ X)) Lemma 2:
< _— = .
1< hrfr_lgéfl V2 hﬁr_lgéf log\/n a) For anyD C Q,
og
h

PZH (Zn

1
)108‘7”
To bound the Shannon entropy, we will not rely on .iecp Pgn(27)

the central limit theorem but on the differential entropy 1
bound on discrete entropy [2, p. 235] < Pz:(D)log|D| + Pz+(D)log Py (D) (34)
HEZ") < %log {27r6<n}(§( 4 %)} (32) b) For any finite-alphabet source, iz~ (D,,) — 0, then
lim — Z Pzu(2")log ———— L =0. (35)
which is justified on the basis that, asymptotically, the TN D, Pzn(2")
masses oF ' become equispaced with spaj(ox /), _ _
while its variance is always. Thus if we were to stretch Proof: To prove part a) first note that iPz. (D) = 0,
the masses to unit distance the variance would becofén both sides are equal to zero. Otherwise, denot&)by
no? /h2. The bound in (32) implies the d|str|bL.1t|onPZn condmoned toD, then replacel;. by
Pz.(D)Q in the left side of (34) and use the fact that the
H(Z") < %logn +0(1) entropy of 2 is at mostlog |D|. Part b) follows from a) and
- |D,| < |A™. O

Of course, Lemma 2 ceases to be useful if the entropy of
source grows more slowly than This is reflected in the
umption of our main result in this section.

®rheorem 11: Assume a finite-alphabet source satisfies

and the proof of (31) is complete.

The cases considered in Theorem 9, namely, Iattlce a%i

incongruent alphabets do not exhaust all possibilities (e.g., t

union of two lattices); however, they provide two extreme

cases where we clearly see the dependence of the entropy of .. JHZ™)

the random walk on the structure of the alphabet. h,{&{,%f T
Returning to Fig. 1, note that we have given an example

of every set and intersection therein, except for the class i€ the following conditions are equivalent:

sources which satisfy the AEP (and thus are strongly entropic)®) subentropic

but are neither stationary/ergodic nor flat-top. Using Cheby-b) strongly superentropic.

chev’s weak law of large numbers (for uncorrelated sequences Proof: Any strongly superentropic source is subentropic

with uniformly bounded second moments [1, Theorem 5.1.1])Theorem 4). Thus we just need to show that the reverse holds

the reader can verify that an example of such a source is assuming that (36) holds. To that end, let us start by fixing
Example 11: A finite-alphabet nonstationary memoryles$; >0 and é; > 0. Noticing thatG,(6;) C G,(—61) (using

source. the notation introduced in the proof of Theorem 4), we can

>0. (36)
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decompose the entropy as As an immediate consequence of Theorem 11, we see that
for any nonzero entropy-rate finite-alphabet source, we can

1 1 1
EH(Z") = Z Pz (2")log Py (o) sharpen Theorem 4 to conclude that the AEP is a necessary
2 EG, (—61)— G (82) Zm\s and sufficient condition for the source to be encodable at its
1 ) 1 entropy and not more efficiently:
+ Z Pzn(2")log Pzn(27) Corollary: For any finite-alphabet source that satisfies (36),

X 2 E€G, (82) the following conditions are equivalent:

+- > Pz )log 55— nl(,n)- (37) ;) AEP
ZmeGs (—61) ) entropic
) strongly entropic.
n the context of finite-alphabet sources satisfying (36), the
relationships depicted in Fig. 1 simplify to those shown in

Lemma 2a) can be used to upper-bound the first and secon
terms in the right side of (37)

l Z Py (zn) IOg Flg 2. - . o o
n €GBy (52) Py (zm) We conclude this section by giving further results for finite-
1 alphabet sources for which the entropy rate exists.
< =P[Gp(—061) — Gp(62)]log |Gr(=61)] A result on fixed-length source coding for general sources
" 1 was given in [6] where it was shown that the minimum
+ gP[Gn(—(Sl) — Gr(62)] achievable fixed-length source coding rate #ris its sup-

entropy rate H(Z), defined as the infimum of the numbers
h >0 for which P[(1/n)logl/Pz~(Z") > h] vanishes as

-log
PlGr(=81) = Gn(52)] n — oo. Analogously, theinf-entropy rate H(Z), is de-
—P[Gr(=01) — Gn(62)] fined as the supremum of the numbeis-0 for which
P[(1/n)log1/Pz~(Z™) < h] vanishes ag. — oo. We will
(1 +0)H(Z") +0(1) (38) see several relevant results that relBteZ) and H(Z) to the
and results in Sections Il and Ill, in the important special case in
1 1 which the entropy rate exists.
= Z Pzn(2")log P (o) Theorem 12: Assume that the entropy rate
2" E€GR(62) Zmiz ) H(zn)
1 lim ————=
< —P[Gn(62)]10g |Grn(62)] nTmee
" 1 1 of a finite alphabet source exists. Then, either
+ —P[Gn(b2)]log mr=—r7 ny
n P[Gn(62)] H(Z) = lim H(Z") =H(Z) (43)
1 n—oo n

:gP[Gn(tSQ)](l—62)H(Z")+o(1) (39) or

. H(Z™
where we have used the fact thatit [0,1] then—zlog z € H(Z)< lim ( ) <H(Z). (44)

[0,e7!loge]. Now let us insert (38) and (39) into (37).
. : ) Furthermore, if the source is subentroplc then (43) is satisfied.
Applying Lemma 2b) to the third term in (37), we can see Proof: It H(Z) = H(Z), then (43) follows from [6,

that it vanishes becaude[G,,(—61)] — 1 since the source is - ,
subentropic. So we end up with l_heemsrgztisl]. If H(Z) < H(Z), then choose >0, and define

%H(Z") < %H(Z")[(l + 61)P[Gn(=61)] Ty ={z" € A": Pz:(2") 2 exp(—nH(Z) + ne)}
— (61 + 8)P[Gu(S)]] +o(1). (@) 2=l AT =T Pl

. - . > exp(—nH(Z)/2 - nH(Z)/2)}
We will now reach a contradiction by assuming that the source ., — [ € A" = Ty: Ppu(#) > exp(—nH(Z) — ne)}
is not strongly superentropic. This means that there exists' > ~ \* e ne

« >0 and a subsequence afalong which Ty ={z" € A™: Pgn(2") < exp(—nH(Z) — ne)}
PG (82)] > . (41) AN -h- T
Note that by the definitions ol (Z) and H(Z), P[T}] — 0,
If 6, and §, are chosen so that and P[Ty] — 0. Using Lemma 2b), we can bound the
ady — (1 —a)s, =n>0 (42) nhormalized entropy by

then (40)—(42) imply the existence of a subsequence alongH (%) — €)P[1»] + wP[Tg] +o(1)
which H(Z")

1 1-—7 <

~H(Z") < H(Z")+ o(1) no_

n n H(Z)+ H(Z) 7
which is impossible because of (36). O < 2 PIT3] + (H(Z) + &) P[T5] + o(1).
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Fig. 2. Classes of finite-alphabet nonzero-entropy rate sources.

Now (44) follows upon recalling that is as small as de- Chooseé > 0. Assuming f) andH(Z) > 0, the following
sired, P[T5] + P[15] — 1, and neitherP[T3] nor P[T3] bound holds for all sufficiently large:
vanish. -

Now, let us show that (43) is the only possible alter-P[B,(§)] =P llogﬁ < lH(Z")(l—é)}
native when the source is subentropic, i.e., its most likely L7 z(Z") ~ n
exp(H(Z")(1 + é)) outcomes exhaust all the probability <P llog 1 < H(Z) <1 + é)(l - 5)}
asymptotically. This implies that ife > lim,, .., H(Z")/n, Ln 7 Pgzn(Z7) 2
then theexp(na(l 4+ 6)) most likely outcomes exhaust all [ ) 1 6
the probability asymptotically. But, for a finite-alphabet Spﬁlog Py (27 <H(Z)(1- 2
source,H(Z) is necessarily finite and according to [6, Theo- ) ) o
rem 3] it is the smallest numbes such that for alls >0, Which vanishes asymptotically by definition 8£(Z). ~

the exp(n3(1 + &)) most likely outcomes exhaust all the Ve note that the results of [6] imply one more equivalent
probability asymptotically. Thus the right inequality in (44) jcondition in Th_eorem 13: that the minimum achievable fixed-
impossible. 7 length and variable-length source coding rates are equal. The
We are finally in a position to state and prove the generdfluivalence of a slightly different version of the AEP to
equivalence result for finite-alphabet nonzero entropy-raf@nditions reminiscent of f) and g) in Theorem 13 was shown
sources. in [10]. . . - .
Theorem 13:The following properties are equivalent Example 2 is a conventional finite-alphabet source with pos-

for a finite-alphabet source for which the entropy ratlVé €ntropy rate which does not satisfy a)-h). The following
lim. H(Z")/n exists and is positive example illustrates that the assumption of nonzero entropy rate

bentrobi in Theorem 13 is not superfluous.
E‘) St" enerP'C tropi Example 12: Consider a binary source such that all
) strongly superentropic n-strings with one 0” have probability a/n (0<a< 1),

g)) 23228:; entropic and all (n? — n)/2 n-strings with two ‘0" have probability
— 2 _ -string i

&) AEP (2 = 2a)/(n* — n). The entropy of am-string is

f) HZ) = nlggo H(Z™)/n H(Z™) =2 -a)logn+ O(1).

9) lim H(?)/” = H(Z) Thus for sufficiently smal§ > 0, the probability of the atyp-

h)y H(Z) = H(Z). ically big masses is

Proof: The equivalence of a), b), c), d), €) has been 1
established above under a weaker condition. The equivalence” [log Do 70
of f), g), h) follows from Theorem 12. Also, a) implies f) 7z (27)
according to Theorem 12. To conclude the proof we will show > P [log
that f) implies e).

<(- 6>H<Z">}

1
Pz S (1202 - a)logn} 4
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