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The Role of the Asymptotic Equipartition
Property in Noiseless Source Coding
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Abstract—The (noiseless) fixed-length source coding theorem
states that, except for outcomes in a set of vanishing probability,
a source can be encoded at its entropy but not more efficiently.
It is well known that the Asymptotic Equipartition Property
(AEP) is a sufficient condition for a source to be encodable at
its entropy. This paper shows that the AEP isnecessaryfor the
source coding theorem to hold for nonzero-entropy finite-alphabet
sources. Furthermore, we show that a nonzero-entropy finite-
alphabet source satisfies the direct coding theorem if and only if
it satisfies the strong converse. In addition, we introduce the more
general setting of nonserial information sources which need not
put out strings of symbols. In this context, which encompasses
the conventional serial setting, the AEP is equivalent to the
validity of the strong coding theorem. Fundamental limits for data
compression of nonserial information sources are shown based on
the flat-top property—a new sufficient condition for the AEP.

Index Terms— Asymptotic equipartition property, entropy,
fixed-length source coding, noiseless data compression, Shannon
theory, source coding theorem.

I. INTRODUCTION

T HE minimum average length of a uniquely decodable
variable-lengthbinary code for an arbitrary random ob-

ject is equal to its entropy plus at most one bit. In contrast to
the generality of this result on the minimum expected length
of variable-length coding, the stronger result onfixed-length
source coding requires to 1) place some conditions on the
source and 2) focus on asymptotics, in order to conclude that
all source strings outside an event of vanishing probability
are optimally encoded at the source entropy. This is satisfied
by stationary/ergodic sources but not necessarily by other
sources; some sources require more, others require less than
the entropy. Typically, thesufficient conditionimposed on the
source so that it can be optimally encoded at its entropy is
the Asymptotic Equipartition Property (AEP):the probability
of the set of -strings whose log-probabilities are roughly

goes to as
The main purpose of this paper is to shed further light onto

the role of the AEP in noiseless source coding. We show that
the AEP is not only a sufficient condition for the validity
of the source coding theorem, but it is in fact anecessary
condition, in the setting of nonzero-entropy finite-alphabet

Manuscript received September 4, 1995; revised October 1, 1996. This
research was supported in part by the National Science Foundation under
Grants ECSE-8857689 and NCR-9523805.

S. Verd́u is with the Department Electrical Engineering, Princeton Univer-
sity, Princeton, NJ 08544 USA.,

T. S. Han is with the Graduate School of Information Systems, University
of Electro-Communications, Chofu, Tokyo, Japan.

Publisher Item Identifier S 0018-9448(97)02636-9.

sources. Within that setting, the AEP turns out to be equivalent
to the equality of the minimum achievable source-coding rates
in fixed-length coding and in variable-length coding. For more
general information sources, the AEP is a necessary condition
for the validity of thestrongsource coding theorem (in which
the probability of error of any code with rate below the entropy
goes to ). We show that any source that satisfies the strong
converse must also satisfy the direct part. For nonzero-entropy
finite-alphabet sources, we show that the the (weak) converse
is always satisfied and that the strong converse is satisfied if
and only if the direct part is satisfied.

Showing that the AEP is equivalent to the validity of the
source coding theorem reinforces the prominent role played by
the AEP in information theory, which is due to the insight it
offers into the behavior of information sources as well as the
fact that it is generally much easier to verify whether the AEP
holds for a particular source than to check whether the source
can be encoded at its entropy but not more efficiently. It is
somewhat surprising that the full role of the AEP in noiseless
data compression had not been discovered before. A key step
in our results is to show that the classical statement of the
AEP is redundant, in the sense that the property is equivalent
to the probability of the set of atypically big masses vanishing
asymptotically.

For the most part, the development will proceed without
placing any assumptions on the allowed class of information
sources. We even allow a generalization of the conventional
setting, where the source does not necessarily output a string
of symbols. We refer to those sources asnonserial information
sources.Consider the following examples of such sources:

1) an image with pixels;
2) the number of Poisson points with growing mean
3) the final value of a random walk
4) the empirical distribution of an -string drawn from a

finite alphabet

In each of these examples, the entropy of the information
source grows without bound with although not linearly as
in the case of a conventional serial source. Note that in cases
2) and 3) a single integer-valued random variable is to be
encoded; whereas in case 4) the information to be encoded is
a vector with fixed dimension Such sources fall outside the
scope of the Shannon–MacMillan Theorem and source coding
theorems had not been been found previously despite their
conceptual, as well as practical, interest. We establish those
new source coding theorems thanks to a new simple-to-check
condition (theflat-topproperty) which is shown to be sufficient
for the AEP to hold.
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A nonserial information source is characterized by a se-
quence of distributions , where need not have
the connotation of blocklength. Since our emphasis is on
noiseless coding, we will require that , the set on which

takes values, be finitely or countably infinitely valued.
The conventional (serial) setting of a source with alphabet
corresponds to the special case whereis equal to the th
Cartesian product

In Section II, we define the main classes of sources we
will be concerned with. Those definitions classify information
sources according to whether they can be encoded above,
below, or at the entropy. Several examples illustrate the
various possible behaviors.

Section III is devoted to the AEP and, in particular, to
showing that, in a completely general setting, the AEP is
equivalentto the property that the source is encodable at its
entropy but any code operating below the entropy results in
probability of error converging to. Exact asymptotic results
are obtained under the only assumption that the entropy of the
object to be encoded is finite and grows without bound. This
encompasses those single-sample information sources cited
above. Stationary ergodic sources satisfy the AEP according to
the Shannon–MacMillan Theorem [2]. Section III shows that
the flat-top property (which proves to be particularly useful for
nonserial information sources) is another sufficient condition
for the AEP.

Section IV focuses on the special, but most important,
case of conventional finite-alphabet sources. The additional
structure of those sources enables the proof of further results
which simplify the general picture. In particular, as long as
the entropy of -strings grows linearly with , we establish
that the AEP is equivalent to the validity of the source coding
theorem.

II. ENTROPIC SOURCES

For the purposes of examining whether a source can be
encoded below, above, or at its entropy asymptotically, only
those sources such that is finite for every and grows
without bound with are of interest. This is an underlying
assumption throughout the paper. However, the growth of

need not be linear (particularly for nonserial sources)
and we shall make no assumptions in that respect. Recall
that is a generic “size” index, which in the special case
of conventional serial sources is equal to the string length.

Fixed-length source codes which assign a unique codeword
to each of the most likely source outcomes (and an “error”
codeword to all other outcomes) achieve the minimum size.
Thus a natural class of information sources are those that can
be encoded with a codebook whose log-size grows as the
entropy.

Definition 1: A source is subentropicif the total mass
of its most likely outcomes1 (or, a
fortiori , any other event with no more than outcomes) goes
to as for any

1The set of theM most likely outcomes is always well-defined (not
necessarily uniquely) even if
n is countably infinite.

Conversely, those sources which cannot be encoded at any
rate smaller than the entropy can be defined as

Definition 2: A source is superentropicif the total mass
of its most likely outcomes does
not go to as for any

Notice that a source is either subentropic or superentropic
(or both). In the conventional terminology, subentropic sources
can be viewed as those that satisfy the direct part of the
coding theorem, whereas superentropic sources are those that
satisfy the converse part. Thus those sources that satisfy both
Definitions 1 and 2 are of major importance:

Definition 3: A source isentropic if it is both subentropic
and superentropic.

Throughout this paper, the exponential and logarithm func-
tions have a common arbitrary basis. If we denote this basis
by , then an entropic source is one for which the most likely

outcomes exhaust (respectively, do not exhaust) the
probability asymptotically if (respectively, ). A
refinement of the notion of superentropic sources is suggested
by the strong converse source coding theorem which states
that coding below the entropy results in probability of error
tending to . This is easily captured by the following definition
of a subclass of superentropic sources.

Definition 4: A source is strongly superentropicif for any
the total mass of its most likely

outcomes goes to as
Definition 5: A source is strongly entropic if it is both

subentropic and strongly superentropic.
Even for simple random processes, it is not easy to char-

acterize the probability of the set of the most likely
outcomes where grows exponentially with the entropy. The
development of tools in order to classify information sources
according to the foregoing definitions is a main goal of this
paper. Prior to developing those tools in Theorems 1–13, we
will exhibit several examples in order to gain insight into the
various classes of sources.

Example 1:A stationary ergodic source
with finite alphabet is strongly entropic. (This follows from the
Shannon–MacMillan Theorem and Theorem 2 in Section III.)

Example 2:The following binary serial source is superen-
tropic but it is neither subentropic nor strongly superentropic:

for any To check this, note that

(1)

where denotes the binary entropy function. No event whose
size grows as exhausts all the probability asymptotically
if Thus the source is not subentropic, and therefore,
it is superentropic. The source is not strongly superentropic
because the event of most likely outcomes has probability
at least for any If instead of being constant,

, then the source becomes strongly entropic.
Example 3: Let with
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and define the two-level distribution

The total mass of the outcomes is equal to
Therefore, bits represent the source with vanishingly

small probability of error as On the other hand, the
entropy, in bits, of is

(2)

Therefore, this source can be encoded at a rate which is
one-third of its entropy rate. Thus it is subentropic but not
superentropic.

Example 4: The Poisson source with mean, with
as

(3)

As we emphasized before, only one integer value is to be
encoded. The entropy of grows as We show in
Theorem 6 that this source is strongly entropic.

Example 5: The geometric distribution with parameter

(4)

Its entropy is

(5)

If as , then It is shown in
Theorem 7 that this source is strongly entropic. In fact, it is
easy to show directly that this source is entropic upon noticing
that the residual probability (not covered by themost likely
outcomes) is

We show next two common examples of nonserial infor-
mation sources derived from a conventional independent and
identically distributed (i.i.d.) source.

Example 6: Let be i.i.d. taking values on a
finite set Under some conditions on the distribution of,
it is shown in Section III that is strongly
entropic.

Example 7: Let be i.i.d. taking values on a
finite set The empirical distribution of is
defined as the -dimensional random vector

(6)

As we will show, this nonserial source is strongly entropic and
can be encoded with bits.

Example 8 (Randomly Chosen Biased Coin):This is a se-
rial stationary nonergodic binary source. Let ,
and let be such that with probability ,
it is Bernoulli with and with
probability , it is Bernoulli with
This source is superentropic but it is neither subentropic nor
strongly superentropic. The entropy satisfies

(7)

but the most likely outcomes
fail to exhaust the probability for sufficiently small
This means that the source is not subentropic, so it must
be superentropic. However, the probability of the most likely

outcomes goes to for sufficiently
small Thus the source is not strongly superentropic.

In Example 9 below we show a source which is entropic
but not strongly entropic. The idea is to have a large set of
very unlikely outcomes whose overall probability vanishes
but which contributes significantly to the entropy, while at
the same time have a single large nonvanishing mass which
prevents the source from being strongly entropic. The fact
that the source in Example 9 has a number of outcomes which
grows superexponentially with is not accidental, as we will
see in Section IV.

Example 9: The source has three types of outcomes:

1) one mass with probability ;
2) masses each with probability ;
3) masses each with probability

The entropy of this source satisfies

bit

To check that the source is indeed subentropic note that for all
, the most likely masses have probability greater

than On the other hand, the most likely
masses have probability

which goes to as Thus this source is superentropic
but not strongly superentropic.

For many sources (in particular, serial finite-alphabet
sources), an easy way to check the validity of the converse of
the source coding theorem is the following.

Theorem 1: Let take values on the set If

(8)

then the source is superentropic.
Proof: Let us define an encoder for the source which

is the identity mapping for the most likely outcomes and
assigns a unique element to all the other outcomes. The output
of the encoder to will be denoted by Note that the
most likely outcomes asymptotically exhaust all the probability
if and only if
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In order to lower-bound the error probability we can use
Fano’s inequality [2]

(9)

Now choose and let , then the
right side of (9) is lower-bounded for all sufficiently largeby

Thus if the condition of the theorem is satisfied, then the
probability of error cannot vanish asymptotically, and the
source is superentropic.

The sufficient condition in Theorem 1 is not satisfied by
many superentropic nonserial information sources of interest,
such as those in Examples 4, 5, 9, or any source with

Fano’s inequality is not sufficiently powerful to deal with
those sources. A simple alternative condition to deal with those
sources will be presented at the end of Section III.

III. A SYMPTOTIC EQIPARTITION PROPERTY (AEP)

In the domain of conventional sources, it is common to
adopt the notion of the Asymptotic Equipartition Property
(AEP), which is satisfied by stationary ergodic sources accord-
ing to the Shannon–Macmillan Theorem [2]. The definition of
the AEP can be immediately extended to any finite-entropy
information source (serial or nonserial; with finite or infinite

.
Definition 6: A source satisfies the AEPif the outcomes

whose log-probabilities differ from by no more than
, exhaust all the probability asymptotically, no matter

how small In other words, the AEP states that for all
, as

and

where the subsets of “atypically big” and “atypically small”
probability masses are denoted by

and

respectively.
The dissection of the set of atypical probability masses into

atypically big and atypically small will be seen to be crucial
for the purposes of this paper.

In the special case of conventional serial sources it is
common to state the AEP as

(10)

for all This is equivalent to Definition 6 as long as the
and of are finite and nonzero.

Traditionally, the AEP takes the role of a sufficient condition
in fixed-length source coding. The following result (first

noticed by Shannon [8, Appendix III] in the context of i.i.d.
sources) summarizes the classical role of the AEP.

Theorem 2: A source that satisfies the AEP is strongly
entropic.

Proof: (AEP Subentropic).The cardinality of the
event (the set of masses that are not atypically
small) is upper-bounded by , and its
probability goes to because of the AEP.

Proof: (AEP Strongly Superentropic).2 Denote the set
of the most likely masses in by
Note that a source is strongly superentropic if and only if

(11)

for all
Let us show that for all implies

To that end we examine the probability of
the right side of

(12)

The definitions of and lead to the following
equations, respectively:

(13)

where the right side vanishes because of the underlying
assumption that grows without bound. Thus (12), (13),
and lead to as desired.

We will strengthen significantly the classical Theorem 2 by
showing that not only the AEP is a sufficient condition for
any source to be strongly entropic but it is also necessary.
Furthermore, we will show the important observation that the
strong converse implies the direct part of the source coding
theorem. In the proof of Theorem 2 we saw that a sufficient
condition for a source to be subentropic (respectively, strongly
superentropic) is that the probability of the event of atypically
small (respectively, big) masses vanish. To show that the
AEP is a necessary condition it is instrumental to prove
that its classical statement (Definition 6) is redundant: if
the event of atypically big masses has vanishing probability,
then, necessarily, the event of atypically small masses must
also have vanishing probability (regardless of how we gauge
typicality). Thus the absolute value in (10) is unnecessary.
Even in the context of i.i.d. sources, it appears that this is a
new observation.

Theorem 3: A source satisfies the AEP if and only if for
all

(14)

2See [5, pp. 42–43] and [3, pp. 16–17] for similar proofs in the context of
i.i.d. sources.
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Fig. 1. Classes of information sources.

Proof: We need to show that if for all
, then for all The idea is to notice

that the contribution of the “big” masses to the entropy is
negligible if Then, the total probability of
the “small” masses must go to zero as well, for otherwise the
average of would exceed

Choose arbitrary and Recalling the definitions
of and and noticing that they are nonoverlap-
ping sets, we can write

(15)

Eventually, Thus we may divide (15) by
to yield, after rearranging terms,

(16)

But no matter how small , the upper bound in (16) is as
as small as desired for sufficiently largebecause the choice
of was arbitrary and Thus the proof is
complete.

Note that the only property of the random variables
used in the proof of Theorem 3 is that

they are nonnegative and their mean is eventually positive.
We are now in a position to state and prove the following

equivalence:
Theorem 4: The following conditions are equivalent for an

information source:

a) AEP,
b) strongly entropic,
c) strongly superentropic.

Proof: Theorem 2 gives a) b) and Definition 5 gives b)
c). Thus we need to show that c) a). Thanks to Theorem

3, it will be enough to show that any strongly superentropic
source satisfies (14) for all But this follows immediately
from (cf. proof of Theorem 2 for notation)

which in turn is a consequence of the fact that

Fig. 1 shows the classification of sources resulting from the
foregoing results. It also shows a new sufficient condition for
the AEP which is particularly useful for nonserial information
sources:

Definition 7: Denote the infinite-order Ŕenyi entropy by
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Note that for any A source is a
flat-top source if

(17)

The termflat top recalls the asymptotic shape of the prob-
ability mass function of in a logarithmic scale when (17)
is satisfied.

Theorem 5: A flat-top source satisfies the AEP.
Proof: According to Theorem 3 we just need to check

that for any , (14) is satisfied. In fact, even more can
be shown: under the flat-top property eventually there are no
atypically big masses. According to (17), for all sufficiently
large

Therefore, for those , we have

where the equality follows from the definition of
A source of fair coin flips is flat-top. However, a source that

satisfies the AEP need not be flat-top, when the most likely
outcomes are not “typical.”

Example 10 (Biased-Coin Flips):A serial Bernoulli source
with parameter It satisfies the AEP, but
it is not flat-top.

and

Note that the sequence is not typical, even though
it is much more likely to occur than any one of the typical
sequences.

Accustomed to thinking of the AEP as a property satis-
fied by stationary ergodic sequences, it may be surprising
that it is satisfied by many nonserial sources, even single-
sample sources, which at first sight look decidedly not almost-
equiprobable. In order to illustrate the utility of Theorem 5,
we will show that the nonserial sources in Examples 4–7 are
flat-top, and thus satisfy the AEP and are strongly entropic.

Theorem 6: The Poisson source (Example 4) with mean
satisfies

Proof: The maximum probability mass is located at
, and

Using Stirling’s approximation it can be checked that
grows as Furthermore, it can be checked that the
differential entropy bound on discrete entropy [2] yields

and the proof is complete in view of
Theorem 7: The geometric distribution (Example 5) with

mean is flat-top and

(18)

Proof: The expression for follows immediately
from (4). Furthermore, using (5) it can be checked that

(19)

Therefore, the geometric source is flat-top as long as
when

Theorem 8: The empirical distribution of a finite alphabet
i.i.d. source with distribution (Example 7) is flat-top.

(20)

where is the number of nonzero probability masses in
Proof: For any -type distribution , the probability that

the empirical distribution is equal to is given by [3, pp. 32,
39]

(21)

where is the number of nonzero masses in, and
lies in a closed interval independent of and

The Shannon entropy and the infinite-order Rényi entropy of
are equal to the average and minimum, respectively,

of (21) over the set of -types. In fact, we will only lower-
bound and upper-bound since we
know that

Fix a sufficiently small We will analyze the minimum
value of (21) achievable by according to the following two
cases:

1)
Since for an -type either or , the
right side of (21) can be lower-bounded, in this case, by
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2)
If we indeed chose to be sufficiently small, then this
case implies that for all

because the Csiszár–Kullback–Kemperman inequality
[3, p. 58] dictates that

So the right side of (21) can be lower-bounded by

Joining the conclusions obtained in both cases we can state
that

(22)

Let us now upper-bound By definition

(23)

where the sum ranges over all-type distributions It
should be noted that this entropy reflects the randomness in the
outcome of the empirical distribution; in particular, it is not an
average of the entropies of the possible empirical distributions.
Expressions (21) and (23) lead to the upper bound

(24)

where the expectation is with respect to This
average divergence between the empirical and the true dis-
tributions is a quantity of interest in itself: it is equal to the
input/output mutual information of an empirical-distribution
computer driven by Using Lemma 1 below we
see that (24) and (25) result in

(25)

Together with (22), this concludes the proof of Theorem 8.
Lemma 1:3 For every

(26)

3Lemma 1 is equivalent to [7, Lemma 1]. We give the proof for complete-
ness.

Proof:

(27)

where we upper-bounded by Straightfor-
ward computations yield

(28)

and

(29)

The desired result follows by inserting (28) and (29) in the
right side of (27)

We now show that the random walk with independent
increments distributed according to (Example 6) is flat-top,
and thus strongly entropic. Encoding the whole evolution of
the random walk is equivalent to
encoding its increments, which takes (asymptotically)
bits according to classical information theory. The result below
shows that if only the final value of the random walk is to be
encoded, bits suffice where depends on the structure
of the alphabet.

Theorem 9: Consider the random walk
where are independent with identical distribu-
tion on a finite set

a) Suppose that is incongruent, in the sense that the
equation

has no integer solutions satisfying other
than Then

(30)

b) Suppose that is a lattice ( where is
an integer). Then

(31)
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Proof:

a) In this case, two sequences with identical sum must have
identical empirical distribution. Since the converse is
always true, knowing the value of is equiv-
alent to knowing the empirical distribution and
(30) is given by Theorem 8.

b) Both the Shannon entropy and the infinite-order Rényi
entropy are invariant to scaling and shifting. Thus we are
free to work with the normalized version of the random
walk

which is known [4, p. 517] to satisfy the central limit
theorem

if is a possible value of According to this uniform-
convergence result, the largest mass of times is
asymptotically upper-bounded by Thus

To bound the Shannon entropy, we will not rely on
the central limit theorem but on the differential entropy
bound on discrete entropy [2, p. 235]

(32)

which is justified on the basis that, asymptotically, the
masses of become equispaced with span ,
while its variance is always. Thus if we were to stretch
the masses to unit distance the variance would become

The bound in (32) implies

and the proof of (31) is complete.

The cases considered in Theorem 9, namely, lattice and
incongruent alphabets do not exhaust all possibilities (e.g., the
union of two lattices); however, they provide two extreme
cases where we clearly see the dependence of the entropy of
the random walk on the structure of the alphabet.

Returning to Fig. 1, note that we have given an example
of every set and intersection therein, except for the class of
sources which satisfy the AEP (and thus are strongly entropic)
but are neither stationary/ergodic nor flat-top. Using Cheby-
chev’s weak law of large numbers (for uncorrelated sequences
with uniformly bounded second moments [1, Theorem 5.1.1]),
the reader can verify that an example of such a source is

Example 11: A finite-alphabet nonstationary memoryless
source.

IV. FINITE-ALPHABET SERIAL SOURCES

So far, our results have applied in full generality to serial
and nonserial sources. We now investigate whether sharper
results are possible within the domain of conventional finite-
alphabet serial sources. That is, henceforth,takes values on
the th Cartesian product , with Indeed, the
general picture in Fig. 1 wil be shown to simplify considerably
for those sources. Let us first state the following immediate
corollary to Theorem 1.

Theorem 10:A finite-alphabet source with

(33)

is superentropic.
Note that Theorem 10 gives a rather general converse fixed-

length source coding theorem for conventional serial sources,
by means of a simple proof based on Fano’s inequality (cf.
proof of Theorem 1).

The reason we will be able to show sharper results for
conventional finite-alphabet sources is that events with small
probability have a small contribution to the normalized entropy
because their cardinality cannot be superexponential. We state
this property in the following simple result.

Lemma 2:

a) For any

(34)

b) For any finite-alphabet source, if , then

(35)

Proof: To prove part a) first note that if ,
then both sides are equal to zero. Otherwise, denote by
the distribution conditioned to , then replace by

in the left side of (34) and use the fact that the
entropy of is at most Part b) follows from a) and

Of course, Lemma 2 ceases to be useful if the entropy of
the source grows more slowly than This is reflected in the
assumption of our main result in this section.

Theorem 11:Assume a finite-alphabet source satisfies

(36)

Then, the following conditions are equivalent:

a) subentropic
b) strongly superentropic.

Proof: Any strongly superentropic source is subentropic
(Theorem 4). Thus we just need to show that the reverse holds
assuming that (36) holds. To that end, let us start by fixing

and Noticing that (using
the notation introduced in the proof of Theorem 4), we can
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decompose the entropy as

(37)

Lemma 2a) can be used to upper-bound the first and second
terms in the right side of (37)

(38)

and

(39)

where we have used the fact that if then
Now let us insert (38) and (39) into (37).

Applying Lemma 2b) to the third term in (37), we can see
that it vanishes because since the source is
subentropic. So we end up with

(40)

We will now reach a contradiction by assuming that the source
is not strongly superentropic. This means that there exists

and a subsequence ofalong which

(41)

If and are chosen so that

(42)

then (40)–(42) imply the existence of a subsequence along
which

which is impossible because of (36).

As an immediate consequence of Theorem 11, we see that
for any nonzero entropy-rate finite-alphabet source, we can
sharpen Theorem 4 to conclude that the AEP is a necessary
and sufficient condition for the source to be encodable at its
entropy and not more efficiently:

Corollary: For any finite-alphabet source that satisfies (36),
the following conditions are equivalent:

1) AEP
2) entropic
3) strongly entropic.

In the context of finite-alphabet sources satisfying (36), the
relationships depicted in Fig. 1 simplify to those shown in
Fig. 2.

We conclude this section by giving further results for finite-
alphabet sources for which the entropy rate exists.

A result on fixed-length source coding for general sources
was given in [6] where it was shown that the minimum
achievable fixed-length source coding rate foris its sup-
entropy rate, , defined as the infimum of the numbers

for which vanishes as
Analogously, theinf-entropy rate, is de-

fined as the supremum of the numbers for which
vanishes as We will

see several relevant results that relate and to the
results in Sections II and III, in the important special case in
which the entropy rate exists.

Theorem 12:Assume that the entropy rate

of a finite alphabet source exists. Then, either

(43)

or

(44)

Furthermore, if the source is subentropic, then (43) is satisfied.
Proof: If , then (43) follows from [6,

Lemma 1]. If , then choose and define
the sets

Note that by the definitions of and ,
and Using Lemma 2b), we can bound the
normalized entropy by
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Fig. 2. Classes of finite-alphabet nonzero-entropy rate sources.

Now (44) follows upon recalling that is as small as de-
sired, , and neither nor
vanish.

Now, let us show that (43) is the only possible alter-
native when the source is subentropic, i.e., its most likely

outcomes exhaust all the probability
asymptotically. This implies that if
then the most likely outcomes exhaust all
the probability asymptotically. But, for a finite-alphabet
source, is necessarily finite and according to [6, Theo-
rem 3] it is the smallest number such that for all ,
the most likely outcomes exhaust all the
probability asymptotically. Thus the right inequality in (44) is
impossible.

We are finally in a position to state and prove the general
equivalence result for finite-alphabet nonzero entropy-rate
sources.

Theorem 13:The following properties are equivalent
for a finite-alphabet source for which the entropy rate

exists and is positive.

a) subentropic
b) strongly superentropic
c) entropic
d) strongly entropic
e) AEP
f)

g)

h)

Proof: The equivalence of a), b), c), d), e) has been
established above under a weaker condition. The equivalence
of f), g), h) follows from Theorem 12. Also, a) implies f)
according to Theorem 12. To conclude the proof we will show
that f) implies e).

Choose Assuming f) and the following
bound holds for all sufficiently large:

which vanishes asymptotically by definition of
We note that the results of [6] imply one more equivalent

condition in Theorem 13: that the minimum achievable fixed-
length and variable-length source coding rates are equal. The
equivalence of a slightly different version of the AEP to
conditions reminiscent of f) and g) in Theorem 13 was shown
in [10].

Example 2 is a conventional finite-alphabet source with pos-
itive entropy rate which does not satisfy a)–h). The following
example illustrates that the assumption of nonzero entropy rate
in Theorem 13 is not superfluous.

Example 12: Consider a binary source such that all
-strings with one “” have probability ,

and all -strings with two “ ” have probability
The entropy of an -string is

Thus for sufficiently small , the probability of the atyp-
ically big masses is
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and, hence, this source does not satisfy the AEP even though

Finally, we mention that forinfinite-alphabetserial sources,
the entropy rate many not lie between the inf-entropy rate

and the sup-entropy rate ; however, the equality
of the latter two quantities is equivalent to the validity of the
strong-converse fixed-length coding theorem in parallel to the
results reported in [9] for channel capacity.
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