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Abstract

Much e�ort has been put into the implementation of automatic proving in interactive geometric envi-
ronments (e.g. Java Geometry Expert, GeoGebra). The closely related concept of automatic discovery,
remains however almost unexplored.

This software presentation will demonstrate our results towards the incorporation of automatic dis-
covery capabilities into GeoGebra, an educational software with tens of millions of users worldwide.
As main result, we report on a new command, currently available in the o�cial version, that allows
the automatic discovery of loci of points in diagrams defined by implicit conditions. This represents
an extension of a previous command, similar in nature, but restricted to loci defined by the standard
mover-tracer construction. Our proposal successfully automates the ‘dummy locus dragging’ in dynamic
geometry. This makes the cycle conjecturing-checking-proving accessible for general users in elementary
geometry.

1 Introduction

In this software presentation, we will show the implementation of an extended version of the LocusEquation
GeoGebra command; extension that is available in this dynamic geometry system since version 5.0.213.0,
dated March 12, 2016. This presentation will demonstrate how this extension makes possible the automatic
discovery of elementary geometry statements within a free dynamic software used by tens of millions of
people worldwide.

That the LocusEquation GeoGebra command is ready for use under real conditions (i.e. school context)
is supported by the fact that there are already examples of its use by teachers1, even though the command
has only been available to the general users for a few weeks.

�Partially supported by the Spanish Ministerio de Economı́a y Competitividad and by the European Regional Development
Fund (ERDF), under the Project MTM2014–54141–P.

1E.g. http://tube.geogebra.org/m/DCSFzaph

85

Distinguished Software Demonstration Award





Automatic reasoning tools in GeoGebra ISSAC software presentations

2 Automatic deduction in geometry

By automatic proving of elementary geometry theorems, we refer to the theorem proving approach via
computational algebraic geometry methods, as initiated by Wu [8] forty years ago, and popularized by the
book of Chou [2]. Roughly speaking, the idea is to provide algorithms, using computer algebra methods,
for confirming (or refuting) the truth of some given geometric statement. More precisely, the goal is to
decide whether a given statement is generally true or not, i.e. true except for some degenerate cases, to
be described by the algorithm. See [2] for an early collection of examples of highly non trivial theorems in
elementary geometry successfully verified by a variety of symbolic computation methods.

Roughly speaking this approach proceeds by translating geometric facts, say hypotheses H and theses
T , into systems of polynomial equations, say SH , ST , and then, translating geometric statements (H � T )
as inclusion tests SH � ST between the solution sets of the corresponding systems of equations. Such
inclusion tests are then elucidated by some computer algebra tools deciding if a polynomial f is or not an
algebraic combination of some given collection of polynomials S, which is—approximately—a way to check
whether the roots of f form a superset or not of the solution set of the system S = 0.

A closely related, albeit di�erent, issue is that of the automatic discovery of theorems, an issue already
present in the pioneer work of Wang [7] and Kapur [4] (see [6] for a large collection of references on this
topic). Roughly speaking, automatic proving deals with establishing whether some statement holds true in
most instances, while automatic discovery –in its most general conception– addresses the case of statements
H � T that are false in most relevant cases. In fact, it aims to automatically produce additional, necessary,
hypotheses H � for the (new) statement (H � H �) � T to be true. One must remark that the search for
complementary hypotheses has to be done in terms of the free variables for the construction.

Describing the implicit geometric locus of a point subject to some geometric constraints, say finding the
locus set of points P for which its projection onto the three sides of a given triangle form a triangle of given
constant area ([2], Chapter IV, Example 5.8) can be considered as a variant of this ‘automatic discovery’
approach. Indeed, the steps in the construction of the projections of P can be considered as the hypotheses
H, while the given constraints over the point P (e.g. requiring that the area of the triangle described by
the three projections of P over the sides of the given triangle must be constant) can be considered as the
proposed thesis T , one that is false for arbitrary positions of P ; finally, the description H � of the locus (for
point P to verify that its three projections form a triangle of fixed area) can be understood as the extra,
necessary hypotheses required for the given statement to hold true, so that H � H � � T .

While automatic proving using computer algebra methods has been used in dynamic geometric software
for years2, similar automatic discovery abilities are not present in software ready for universal use. Following
our goal towards the popularization of tools for automatic reasoning in geometry, we have collaborated
with other authors providing automatic proving resources to GeoGebra [1]. Continuing this trend, this
software presentation showcases our recent work on the addition of discovery capabilities to GeoGebra
based on the computational approach described in [5, 3].

3 The GeoGebra command LocusEquation

Automatic discovery in GeoGebra requires that the user first constructs a geometric diagram. Although
theoretically all algebraic constructions (i.e. those composed of elements that can be expressed by polyno-
mial equations) can serve as initial data for GeoGebra’s discovery tool, technical reasons, mainly related
to computational time limitations, restrict the applicability of the tool for some involved constructions.
Moreover, note that non-algebraic elements, such as the graph of a sine function, fall out of the scope of
the method, algebraic in nature.

2See Java Geometry Expert, JGEX, http://www.cs.wichita.edu/~ye/gex.html, for a paradigmatic example.
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Figure 1: Right triangle altitude theorem: e2 = f · g.

After constructing a geometric diagram the user needs to type the command LocusEquation with
two parameters: the sought thesis T (which must be an atomic Boolean expression) and a free point P
‘supporting’ the discovery3. The Boolean expression plays the role of the extra condition that we require our
diagram to satisfy. The free point P is the point over which the sought extra hypothesis will be stated; i.e.,
in algebraic terms, the symbolic coordinates of P will be the only variables of the polynomials conforming
the necessary conditions obtained as a result of the discovery process. As a result, LocusEquation[T,P]
will produce a set V (providing its implicit equation) such that ‘if T is true then P � V ’. It should be noted
that the basic points of the construction—other than P—are fixed, that is, their numerical coordinates
will be used in the discovery computation. Recall that P has always symbolic coordinates. Thus, we are
discovering on a specific instance of the general construction, so it could happen that we discover some
incidental property only related to this particular instance. For example, if we intend to construct a general
triangle but we actually draw—without noticing it—an isosceles one, we can find out statements which
are true just for this particular kind of triangles. Of course, this confusion will be clarified in the proving
phase, when intending to check the validity, in general, of the obtained result.

As a simple illustrative example, let us ‘discover’ a generalization of the right triangle altitude theorem,
which says that, for a right triangle, we have e2 = f · g where e is the length of the altitude drawn from
the vertex of the right angle to its hypotenuse, and f and g are the lengths of the segments BD and CD,
as described in Fig. 1, left. For what positions of the vertex A is this equation still true?

As explained above, we obtain the answer by typing LocusEquation[e*e == f*g, A]. For these
particular vertices B(�1, 0) and C(1, 0) we get the algebraic curve given by the polynomial y4+2x2�x2�1,
that factors as the product (�x2 +y2 +1) · (x2 +y2 �1). So we see that the locus set includes the expected
circle with diameter BC corresponding to right triangles ABC, but also the hyperbola y2 � x2 = �1.
Figure 1 (right) shows a non-right triangle satisfying the right triangle altitude theorem relation.

Let us insist on the fact that points B, C are not generally considered, but their numerical coordinates
are used in the computations. This implementation decision tries to imitate the traditional inductive
process, reasoning over on concrete situations as a first step.

Once we obtain the equation of the hyperbola as a necessary condition that A has to satisfy if e2 = f ·g,
we can proceed to prove its su�ciency, namely that e2 = f · g if A(x, y) is a point in the hyperbola
y2 �x2 = �1. We have that e is given by the y-coordinate of A (or its opposite), and therefore e2 = x2 �1.
Also we have that f = distance(D, B) =

�
(x + 1)2 and g = distance(D, C) =

�
(x � 1)2, so f ·g = x2 �1,

which finally proves that e2 = f · g and hence the condition is also su�cient.
Although the computations above have been made for the particular instance determined by the points

B(�1, 0) and C(1, 0), taking into account that the general result is invariant under dilations (homotheties
and translations), we can assert that the necessary condition is also su�cient for two general points B and
C. In summary, we have ‘discovered’ the following generalization of the right triangle altitude theorem:

3See documentation in https://www.geogebra.org/manual/en/LocusEquation_Command
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given any two points B, C, a third point A satisfies that distance(A, D)2 = distance(D, B)·distance(D, C),
where D is the orthogonal projection of A onto the line BC, if and only if A belongs to the circle with
diameter BC (i.e. ABC is a right triangle) or to a hyperbola as illustrated by Fig. 1.
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