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Stochastic integrals in the plane

DAvID NUALART*

One of the papers that has very much influenced the first steps of my
mathematical career in stochastic analysis was the article on “Stochastic
integrals in the plane” by Renzo Cairoli and John B. Walsh, published in
Acta Mathematica in 1975 (see [1]). This is a very long paper, and I still
keep the original reprint offered by the authors. I came across this paper
during my postdoctoral stay at the “Laboratoire d’Automatique et Analyse
des Systemes”, in Toulouse, in 1976, in occasion of a seminar talk given by
Eugene Wong from Berkeley on multiparameter processes. At that time,
being at the beginning of my career, I was interested in stochastic analysis,
but I still had not found a suitable research direction. Reading this paper was
a discovery for me, and I found many sources of interesting open problems
and new leads to follow.

Offered by the Authors
STOCHASTIC INTEGRALS IN THE PLANE
B
R. CATROLI and JOHN B. WALSH

Ecale pelyiechnigue fedirale Lousanne, Suisse
Univirsity of British Calumbia Venesuser, Canada

§0. Introduction.

Lt W be the random measure in RS, the positive quadrant of the plane, which assigns

& 1o each Borel st 4 a Gaussian random variable of mean zero and variance m(d), where m
is Lebesguo measure, and which assigns independent tandom variables to disjoint sets
STOCHASTIC INTEGRALS IN TH E PLANE (see [6], [14], [157, [19] and [20]). Lt is natural to construct stochastic integrals with respect
0 W (see (13, [4], [7], [10, (18], [15], [18] and [20]) but one can do more. Define a prosess
W—{W, :€RE} by W.=W(R,), where E, is the rectangle whose lower loft hand corner
is the origin and whose upper right hand corner is z. I i salled the two-parameter Wiener
process. Tt is a continuous proecss, and if wo write 2= (s, t) and fix 5, t= W is a Brownian

R. CAIROLI ixp JOHN B. WALSH motion; likewise, 5 ., is also a Brownian motion. Since the theory of stochastio integra-
tion with tespect to Brownian motion is well-known, this opens the possibility of stochastic

Tine integeals; wo will sce that one can integrate along all suffiviently smooth curves in RS
The question that motivated this study was that of holomorphic processes, and this

question still forms the gonl of the present article. A process @ is holomorphio if it has &
derivative ¢, in the sense that &, = ®, + |3 42, where the line integral is taken over any
sutficiently smooth aarve conneoting 0 and z. These processes burn oat to have a structare
Regrint from Acta mathematica Vol. 134, 1975 which is in some ways remarkably Iike that of classies] holomorphic functions of & complex
variable, even though they are real, not complex, valued. For instance, if ® is holomorphic,

so s its derivative ¢, and there i# even an analogue of the power series expansion

FIGURE 1: First pages of the old reprint offered by the authors with its
yellowing pages that I still keep in my files.

The paper [1] is considered a fundamental work on the theory of two-
parameter processes. This theory deals with stochastic processes

{ X4, (s,t) eRLY

which depend on two parameters, instead of the usual time parameter. Dur-
ing the 70’s, and starting from the pioneering work by Cairoli and Walsh, this
field was developed and got the attention of leading probabilists like Paul
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André Meyer. An important landmark was the conference on two-parameter
processes that took place in Paris in 1980, whose proceedings were published
in the volume 863 of the Lecture Notes in Mathematics.

A basic ingredient in this theory is the two-parameter Brownian motion
also called Brownian sheet. This is a two-parameter process

(Wi (s,1) € RY}

defined in a probability space (€2, F, P), which is Gaussian, with zero mean
and covariance function given by

E(Ws, 1, W, 1,) = min(sy, so) min(ty, t2) .

The trajectories of this process, that is, the mappings (s,t) — Ws(w) are
continuous surfaces, and for any fixed s, t — W, is a Brownian motion, and
likewise, s — W is also a Brownian motion. The purpose of the article [1]
is to construct a stochastic calculus for the two-parameter Brownian motion
similar to the classical [t6 calculus developed by Kyoshi It6 in the 40’s for the
standard Brownian motion. New ingredients appear here, for instance, one
can define surface integrals and also curvilinear integrals. On other hand,
this calculus should be related to the theory of two-parameter martingales.

Let us introduce some basic notation of the theory of two-parameter
processes. For any point z = (s,t) € R2 we denote by R, the rectangle
[0, s] % [0,]. Also, for any z € R% we denote by F, the o-field generated by
the random variables {W, £ € R.}. We say that a process {¢(z),z € R?}
is adapted if ¢(z) is F.-measurable for each z. The notion of predictability
is stronger than adaptability and is required to define stochastic integrals.
The predictable o-field P of subsets of RZ x 2 is generated by the sets of
the form (s,t] x (s',¢'] x A, where A € F, . A two-parameter process X is
called predictable if the mapping (z,w) — X, (w) is measurable with respect
to the predictable o-field. These notions are similar to the one-parameter
case. The main difference is the fact that the parameter space R? is partially
ordered and this creates new difficulties. In addition to the o-fields F,, one
can consider also the bigger o-fields F! and F?2, generated by the random
variables {Wy ¢+, s < s} and {Wyy,t" < t}, respectively, where z = (s, ).

Given z = (s,t) € Ri, the surface stochastic integral with respect to the
Brownian sheet W on the rectangle R,

Lﬂ@W%’

is defined for processes {¢(£),& € R%} which are predictable and square
integrable, that is,

E(&MW%)<w,



ALL THAT MATH 263

for each z € Ri. This is the counterpart of the It integral. In the case of
a process continuous in L?(£2), this integral is the limit in L?*(Q) of the Rie-

manmn Sums:
/ $(€)dWe = lim me Aij),

1,5=0
where z;; = (is/n,jt/n), Ni; = (%), Zit14+1), and W(A; ;) denotes the
increment of the process W on the rectangle A, ; defined by

W(A; ;) =W

) Zit1,5+1

- W,

Zi,j+1

- W,

Zit1,5

+ W, -

This integral has zero expectation and satisfies the classical [to isometry

property:
B(] | o) =£( [ oera).

This is a consequence of the fact that the process W has independent incre-
ments in disjoint rectangles, and we have considered Riemann sums based
on the value of the process in the lower left corner of the rectangle.

A fundamental result in It6 calculus is the Martingale Representation
Theorem that asserts that any square-integrable martingale relative to the
natural fields of the Brownian motion can be written as a constant plus a
stochastic integral. In order to extend this result to the framework of the
two-parameter Brownian motion, we need first to introduce the notion of
martingale for two-parameter processes. The simplest way to do this is to
use the partial ordering on the plane: 2/ = (¢',t') < z = (s,t) if and only
if & <sandt <t An adapted stochastic process M = {M,,z € R3}, is
called a martingale if E(|M.|) < oo for each z, and

E(M.|F.) = M.

for each 2/ < z. It turns out that the Martingale Representation Theorem
is no longer true in the framework of the two-parameter Brownian motion.
More precisely, Wong and Zakai [5] proved the following result: If M =
{M,,z € Ri} is a square integrable martingale, then for each z € Ri,

M. = Mo+ [ o(6)awe + / G, €)AWedWe
R, R.XR,

where the second integral is a double stochastic integral, and the process
(&, &) vanishes except if £ = (s,t) and £ = (¢, t') satisfy s < §" and t > ¥/,
is square integrable and it satisfies a suitable predictability condition.
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The stochastic integrals

{ 5 S(E)dWe, = € Ri}

constitute a special type of martingales, called strong martingales. This
means that, for any z < 2/, the process M, = [ R d(&)dWy satisfies

E(M((z Z)|F. v F2) =0,

where M((z,2]) denotes the rectangular increment of M, and F!V F? de-
notes the o field generated by F! and F2. The strong martingale property of
these integrals is a consequence of the fact that the two-parameter Brownian
motion W has independent increments on disjoint rectangles. Furthermore,

all strong square integrable martingales vanishing on the axes are stochastic
integrals of the form M, = [, ¢(§)dW.

The notion of quadratic variation plays a basic role in 1t calculus, and
it is the source of the complementary terms appearing in the classical Ito
formula. The quadratic variation of a one-parameter continuous process
{X;,t > 0} is defined, if it exists, as the limit in probability

n—1

(X)) = nh_)ff)lo Z(X(H-l)t/n - Xit/n)Q-
i=0

For example, if B; is a Brownian motion, (B); = ¢t. It turns out that any
continuous martingale M = {M,;,t > 0} has an increasing and continuous
quadratic variation (M);. Now, the restriction of a two-parameter martin-
gale M = {M,,z € Ri} to a continuous increasing path in the plane

v={v(t),0 <t <1},
starting at the origin, defines a one-parameter martingale
M7 = {My4,0 <t <1}

and we can compute its quadratic variation (M7),. We say that a two-
parameter martingale M ={M,, z € R2} has path-independent variation if

(M) = (M),

for any two paths v and «/ such that v(1) = 4/(1). This notion was intro-
duced by Moshe Zakai. Then, strong martingales have path-independent
variation, and Cairoli and Walsh said in their paper that “We have not suc-
ceeded in proving that, in general, the converse is true, that is, that each
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martingale with path-independent variation is a strong martingale. How-
ever, several indications let us believe that path-independence is a second
characterization of the strong martingales”.

This statement le me to be interested in this challenging open problem.
After working for a while, I was able to prove the surprising fact that this
converse result is not true, and there are path-independent variation mar-
tingales which are not strong. The construction of such martingales is very
delicate and it is obtained by an approximation procedure. I was very proud
of this result which I consider my first important contribution to stochas-
tic analysis. It was published in the proceedings of the conference in Paris
devoted to two-parameter processes (see [4]).

The paper by Cairoli and Walsh [1] was actually motivated by the study
of holomorphic processes in the plane. A process ® is holomorphic if it has
a derivative ¢, in the sense that

q)z:q)0+/ ¢6W7
0

where foz @OW is a line integral taken over any sufficiently smooth curve
connecting (0,0) and z. These processes turn out to have a structure which
is in some ways remarkably like that of classical holomorphic functions of a
complex variable, even though they are real. For instance, if ® is holomor-
phic, so is its derivative ¢, and there is even an analogue of the power series
expansion. Some years later, in collaboration with Ely Merzbach (see [2])
using techniques of Malliavin calculus, and more precisely, the Clark-Ocone
formula to represent ®, as a stochastic integral, I was able to obtain a con-
dition on the Malliavin derivative of ® that characterizes holomorphicity.
This leads to a simple proof of the power series expansion of holomorphic
processes.

The line integrals together with the surface integrals allowed Cairoli and
Walsh to derive in [1] a Green formula for rectangles, and, as an application,
to show a two-parameter version of the classical It6 formula. An immediate
application of this formula was the existence and continuity of the local time
for W by means of a suitable version of Tanaka’s formula.

I continued working on two-parameter processes for a while, especially
on regularity properties of martingales and their two-parameter quadratic
variation. For instance, in [4], I was able to prove the continuity of the
quadratic variation of a square-integrable two-parameter continuous mar-
tingale, which was also an open problem. As other researchers in the field,
at the beginning of the eighties I shifted my research interests to other topics
like stochastic partial differential equations which are also connected with
multiparametric processes.



266

DAviD NUALART

References

1]
[2]

3]

CairoLi, R. AND WALSH, J.B.: Stochastic integrals in the plane. Acta
Math. 134 (1975), 111-183.

MERZBACH, E. AND NUALART, D.: Generalized holomorphic processes and
differentiability. J. Theoret. Probab. 2 (1989), 419-432.

NUALART, D.: Martingales a variation indépendante du chemin. In Two-
index random processes (Paris, 1980), 128-148. Lecture Notes in Math. 863.
Springer, Berlin, 1981.

NUALART, D.: On the quadratic variation of two-parameter continuous mar-
tingales. Ann. Probab. 12 (1984), 445-457.

WonNG, E. AND ZAkAI, M.: Martingales and stochastic integrals for pro-

cesses with a multi-dimensional parameter. Z. Wahrschienlichkeitstheorie
und verw. Gebiete 29 (1974), 109-122.





