Multihomogeneous resultant matrices

. . - - *
Alicia Dickenstein
Departamento de Matematica, FC.Ey N.
UBA (1428) Buenos Aires, Argentina

alidick@dm.uba.ar

ABSTRACT

Multihomogeneous structure in algebraic systems is the first
step away from the classical theory of homogeneous equa-
tions towards fully exploiting arbitrary supports. We pro-
pose constructive methods for resultant matrices in the
entire spectrum of resultant formulae, ranging from pure
Sylvester to pure Bézout types, including hybrid matrices.
Our approach makes heavy use of the combinatorics of mul-
tihomogeneous systems, inspired by and generalizing certain
joint results by Zelevinsky, and Sturmfels or Weyman [15,
18]. One contribution is to provide conditions and algo-
rithmic tools so as to classify and construct the smallest
possible determinantal formulae for multihomogeneous re-
sultants. We also examine the smallest Sylvester-type ma-
trices, generically of full rank, which yield a multiple of the
resultant. The last contribution is to characterize the sys-
tems that admit a purely Bézout-type matrix and show a
bijection of such matrices with the permutations of the vari-
able groups. Interestingly, it is the same class of systems
admitting an optimal Sylvester-type formula. We conclude
with an example showing all kinds of matrices that may be
encountered, and illustrations of our MAPLE implementa-
tion.

Keywords
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1. INTRODUCTION

Resultants provide efficient ways for studying and solving
polynomial systems by means of their matrices. This paper
considers the sparse (or toric) resultant, which can exploit

*Partially supported by Action A00E02 of the ECOS-
SeTCIP French-Argentina bilateral collaboration, UBA-
CYT X052 and ANPCYT 03-6568, Argentina.

JrPaurtially supported by Action A00E02 of the ECOS-
SeTCIP French-Argentina bilateral collaboration and FET
Open European Project IST-2001-35512 (GAIA-II).

. T
loannis Z. Emiris
INRIA, B.P. 93, Sophia-Antipolis 06902, France

loannis.Emiris@inria.fr
http://www-sop.inria.fr/galaad/emiris

a priori knowledge on the support of the equations, and
scales with it. We concentrate on unmixed (i.e. with iden-
tical supports) systems where the variables can be parti-
tioned into groups so that every polynomial is homogeneous
in each group. Such polynomials, and the resulting systems,
are called multthomogeneous. Multihomogeneous structure
is a first step away from the classical theory of homogeneous
systems towards fully exploiting arbitrary sparse structure.
Multihomogeneous systems are encountered in several areas
including geometric modeling (eg. [2, 14, 19]), game theory
and computational economics.

Known sparse resultant matrices are of any from a range of
different types. On the one end of the spectrum are the pure
Sylvester-type matrices, where the polynomial coefficients fill
in the nonzero entries of the matrix; such is the coefficient
matrix of linear systems, Sylvester’s matrix for univariate
polynomials, and Macaulay’s matrix for homogeneous sys-
tems. On the other end are the pure Bézout-type matrices,
i.e. matrices where the coefficients of the Bezoutian associ-
ated to the input polynomials fill in the nonzero entries of
the matrix, whereas hybrid matrices, such as Dixon’s, con-
tain blocks of both pure types. The complete example in
Sect. 6 shows the intricacy of such matrices. Hence the in-
terest to describe them in advance in terms of combinatorial
data, which allows for a structured matrix representation,
based on quasi-Toeplitz or quasi-Hankel structure [9, 13].

Our work builds on [18] and their study of multihomoge-
neous systems through the determinant of a resultant com-
plex. First, we give algorithmic methods for identifying and
constructing determinantal formulae for the sparse resul-
tant, i.e. matrices whose determinant equals the sparse re-
sultant. The underlying resultant complex is made explicit
and computational tools are derived in order to produce
the smallest such formula. Second, we describe and con-
struct the smallest possible pure Sylvester matrices, thus
generalizing the results of [15] and [10, 13.2,Prop.2.2]. The
corresponding systems include all systems for which exact
Sylvester-type matrices are known. The third contribution
of this paper is to offer sufficient and necessary conditions
for systems to admit purely Bézout determinantal formulae,
thus generalizing a result from [3]. It turns out that these
are precisely the same systems admitting optimal Sylvester-
type formulae! We also show a bijection of such matrices
with the permutations on {1,...,r}, where r stands for the
number of the variable groups. While constructing explicit
Bézout-type formulae, we derive a precise description of the



support of the Bezoutian polynomial.

This paper is organized as follows. The next section gives
a formal background and Sect. 1.2 presents previous results
and how they are generalized here. Sect. 2 provides some
technical facts useful later. Sect. 3 offers bounds in search-
ing for the smallest possible determinantal (hybrid) formu-
lae. Sect. 4 and 5 characterize matrices of pure Sylvester
and pure Bézout type respectively. In Sect. 6 we provide an
explicit example of a hybrid resultant matrix for a multide-
gree for which neither pure Sylvester nor pure Bézout deter-
minantal formulae exist; this example illustrates all possi-
ble morphisms that may be encountered with multihomoge-
neous systems. Our MAPLE implementation is described in
Sect. 7. Due to length restrictions, only the most important
or representative proofs are included; an Appendix contains
most other proofs.

1.1 The Setting

Consider the r-fold product X := P’ x ... x P’ of projec-
tive spaces of respective dimensions li,...,l, over an alge-
braically closed field of characteristic zero, for some natural
number . We denote by n =", _, I} the dimension of X,
i.e. the number of affine variables.

DEFINITION 1.1. Consider d = (di,...,d,) € NSy and
multihomogeneous polynomials fo,..., fn of degree d. The
multihomogeneous resultant is an irreducible polynomial
R(fo,..., fn) = Ray,...1,y.a(fo,- .., fn) in the coefficients of
fo, ..., fn which vanishes iff the polynomials have a common
root in X.

This is an instance of the sparse resultant [10]. It may be
chosen with integer coefficients, and it is uniquely defined up
to sign by the requirement that it has relatively prime coeffi-
cients. The resultant polynomial is itself homogeneous in the
coefficients of each f;, with degree given by the multihomo-
geneous Bézout bound (ll,_T_L_JT)dll1 ---dlr [10, prop. 13.2.1].
This number is sometimes called the m-homogeneous bound

[16].

Let V' be the space of (n + 1) tuples f = (fo,...,fn) of
multihomogeneous forms of degree d over X. Given a degree
vector m € Z" there exists a finite complex K. = K.(m)
of free modules over the ring of polynomial functions on V'
[18], whose terms depend only on (li,...,l,),d and m and
whose differentials are polynomials on V' satisfying:

(i) For every given f we can specialize the differentials in
K. by evaluating at f to get a complex of finite-dimensional
vector spaces.

(i1) This complex is exact iff R(fo,..., fn) # 0.

We describe the terms in this complex in Sect. 2.

DEFINITION 1.2. Giwen r and (l1,...,l;),(d1,...,d;) €
N, define the defect vector & € Z" (just as in [15, 18])
by O = I, — fi—’;] Clearly, this is a mon-negative vector.
We also define the critical degree wvector p € N' by pr =
(n+1)dk—lk—l

LEMMA 1.3. [18] For any i € [r] := {1,...

,7“}, dil; <

1.2 Previouswork

The complex with terms K, (m) described in the next sec-
tion is known as the Weyman compler. For any choice of
li,...,lx, d and m, the multihomogeneous resultant equals
the determinant of the Weyman complex (for the corre-
sponding monomial basis at each of the terms), which can
be expressed as a quotient of products of subdeterminants
extracted from the differentials in the complex. This way
of defining the resultant was introduced by Cayley [10,
appx A],[17], [18]. In the particular case in which the com-
plex has just two terms, its determinant is nothing but the
determinant of the only nonzero differential, which is there-
fore equal to the resultant. In this case, we say that there
is a determinantal formula for the resultant and the corre-
sponding degree vector m is called determinantal. In [18],
the multihomogeneous systems for which a determinantal
formula exists were classified; see also [10, sect. 13.2]. Their
work, though, does not identify completely the correspond-
ing morphisms, a question we partially undertake. We fol-
low the results [4], which concerned the homogeneous case,
inspired also by [12].

The main result of [15] was to prove that a determinan-
tal formula of Sylvester type exists exactly when all defects
are zero. In [15, Th.2] (recalled in [10, 13.2,Prop.2.2]) all
such formulae are characterized by showing a bijection with
the permutations of {1,...,r} and defined the correspond-
ing degree vector m as in Def. 4.2 below. This includes
all known Sylvester-type formulae, in particular, linear sys-
tems, systems of 2 univariate polynomials and bihomoge-
neous systems of 3 polynomials whose resultant is, respec-
tively, the coefficient determinant, the Sylvester resultant
and the Dixon resultant. In fact, Sturmfels and Zelevinsky
characterized all determinantal Cayley-Koszul complexes,
which are instances of the Weyman complexes when all the
higher cohomologies vanish.

The incremental algorithm for sparse resultant matrices [7]
relies on the determination of a degree vector m. When
d = 0, it produces optimal Sylvester matrices by [15]. For
other multihomogeneous systems, [7] heuristically produces
small matrices, yet with no guarantee. For instance, on the
system of Ex. 4.5, it finds a 1120 x 1200 matrix. The present
paper explains the behavior of the algorithm, since the lat-
ter uses degree vectors following (4.2) defined by random
permutations. Our results provide immediately the small-
est possible matrix. More importantly, the same software
constructs all Sylvester-type formulae described here.

Pure Bézout-type formulae were studied in [3] for unmixed
systems whose support is the direct sum of what they call
basis simplices, i.e. the convex hull of the origin and another
I points, each lying on a coordinate axis. This includes the
case of multihomogeneous systems. They showed that in
this case a sparse resultant matrix can be constructed from
the Bezoutian polynomial, to be defined in Sect. 5, though
the corresponding matrix formula is not always determinan-
tal. Their Cor. 4.2.1 states that for multihomogeneous sys-
tems with null defect vector, the Bézout formula becomes
determinantal; Saxena had proved the special case of all
I, =1 [14]. In [3, sect. 4.2] they indicate there are r! such
formulae and in Sect. 5 they study bivariate systems (n = 2)
showing that then, these are the only determinantal formu-



lae.

Sect. 5 proves these results in a different manner and char-
acterizes the determinantal cases for multihomogeneous sys-
tems, showing that a null defect vector is a sufficient but
also necessary condition for a determinantal formula for any
n. We provide thus an affirmative answer, in the case of
multihomogeneous systems, to the question on whether a
generic polynomial system admits an optimal Sylvester-type
formula iff it admits an optimal Bézout-type formula (cf.
Def. 5.1) This had been proven for arbitrary systems only
in the bivariate case [2]. In particular, we explicitly exhibit
a choice of the differential in the Weyman complex in this
case (cf. Thm. 5.13).

Studies exist [2, 4, 19] for dealing with hybrid formulae in-
cluding Bézout-type blocks or pure Bézout matrices, and
concentrate on the computation of such matrices. In partic-
ular, [19] elaborates on the relation of Sylvester and Bézout-
type matrices (called Cayley-type there) and the transfor-
mations that link them. The theoretical setting together
with Pfaffian formulae for resultants is addressed in [6].

2. PRELIMINARY OBSERVATIONS

Some facts from cohomology theory are necessary; see [11]
for details. Given a degree vector m € Z", define, for v €
{-n,...,n+1},

K,(m) = @

p€{0,...,n+1}

= x,m—pd)2), )

where for an integer r-tuple m', H¢(X, m') denotes the g-th
cohomology of X with coefficients in the sheaf O(m'). The
global sections H°(X,m’') are identified with multihomoge-
neous polynomials of degree m’. By the Kiinneth formula,
we have
Jk€{0lk} r _
HY(X,m-pd)= @ QH*P" my—pds),
Jitetir=q k=1

where ¢ = p — v and the second sum runs over all integer
sums ji +-- -+ j» = q,jr € {0,1x}. In particular, H°(P'* )
is the space of all homogeneous polynomials in [}, + 1 vari-
ables with total degree a. We recall Bott’s formulae for
these cohomologies.

PROPOSITION 2.1. For anym € Z7, H'* (P%*, my—pdy) =
0 < mr —pdr > —li, HO(Plk,mk —pdk) =04 mg —pdr <
0, for k € {1,...,r}. Moreover,

Hj(]Plkamk' _pdk) = O,V] ;é Oallﬁ

dim Hl’“(]P’l’“, M — pdy) = (—mk +lpdk - 1) 7
k

dim H(B'*, my, — pdy,) = (mk e l’“) ,
k

JL€{0,} r _
[ ] dim H* (B, my —pdy),
Jittir=q k=1

(" + 1) dim H”™* (X, m — pd).

dim HY(X, m—pd) =

dimK,(m) =

p€[0,n+1]

We detail now the main results in [18]. They show
(Lem. 3.3(a)) that a vector m € Z" is determinantal iff
K_i(m) = Kz(m) = 0. They also prove in Thm. 3.1 that
a determinantal vector m exists iff 6, < 2 for all k € [r].
To describe a differential in the complex from K, (m) to
K, t1(m), one needs to describe all the morphisms d,
from the summand corresponding to an integer p to the
summand corresponding to another integer p’, where both
p,p’ €{0,...,n+ 1}. [18, Prop. 2.5,2.6] proves this map is
0 when p < p' and that, roughly speaking, it corresponds to
a Sylvester map (go,...,gn) = D1y gifi when p =p’ + 1,
thus having all nonzero entries in the corresponding matrix
given by coefficients of fo,..., fn. For p > p’ + 1, the maps
0p p are called higher-order differentials. By degree reasons,
they cannot be given by Sylvester matrices. Thm. 2.10 also
gives an explicit theoretical construction of the higher-order
differentials in the pure Bézout case (cf. Def. 5.1).

3. DETERMINANTAL FORMULAE

This section addresses the computational problem of enu-
merating all determinantal vectors m € Z". The “proce-
dure” of [18, Sect. 3] “is quite explicit but it seems that
there is no nice way to parametrize these vectors”, as stated
in that paper. Instead, we bound the range of m to imple-
ment a computer search for them.

Given k € {1,...,r} and a vector m € Z" define as in
[18]: Pi(m) = {pEZ: me << mg—:lk} Let Py (m) be

a0 d
ing Lem. 3.3 in [18], it is easy to give bounds for all deter-
minantal vector m for which all Py(m) # 0.

the real interval (ﬂ Tk :l’“], s0 Py(m) = Py(m)NZ. Us-

LEMMA 3.1. For a determinantal m € Z" and for all k €
{1,...,7r}, Pr # 0 implies, max{—di, —Ilr} < mi < dir(n+
].) -1+ min{dk — g, 0}

Now, p € Py(m) iff H'*(P'* my, — pdy) = H°(P'* my —
pdi) = 0. Thus a first guess could be that all determinantal
vectors give Pi(m) # . But this is not the case, as the
example shows:

ExaMPLE 3.2. Let [ = (1,2),d = (2,3). We focus on
m = (2u1,3p2); both m below yield determinantal formulae

m=(4,3)= P =(25/2],P. =(1,5/3],dim M = 96,
m=(6,3)= P =(3,7/2],P=(1,5/3],dim M = 88,

and all P; = (). Therefore p € [0,4]. Use v(p) =p—q =
P — 2,5, lk, which can only lie in {0,1} in the case of a
determinantal formula. This is equivalent to v(p) = p —
2 pdy >my,+1;, [k, hence this becomes v(p) = p—¢(2p > m1 +
1)1 —¢(3p > 5)2, where ¢(E) € {0, 1} according to whether
E is false or true. The possible values for p are 0,1,2,3;
respectively v = 0,1,0,0 or 1,1 and ¢ = 0,0,12,l1 4+ 2 or
2,11 + l>. The disjunction for p = 3 corresponds to 2 m-
vectors. O

71::)2
, P2

We wish now to get a bound for those determinantal vectors
for which some P is empty. Let []x € {0,1,...,d — 1}
denote remainder after division by dy.



DEFINITION 3.3. Given m € Z" and k € {1,...,r}, de-
fine new vectors m',m" € Z" whose j-th coordinates equal
those of m ¥j # k and s.t. mj, = mg +di, — [mglr — 1 >
my > my = my — [my + U]k

LEMMA 3.4. The new vectors m',m” differ from m at
their k-th coordinate if Pr(m) = 0.

LEMMA 3.5. Ifm € Z" with Py(m) = 0 and H°(P*, ms—
pdy) = 0 (resp. H'*(P'* my — pdy) =0), then P,(m') # 0
and H°(P'*,m), — pdy) = 0 (resp. H'% (P, m}, —pdi) =0),
where mj, = my, + dj, — [my]r, — 1 as in Def. 3.3.

LEMMA 3.6. Ifm € Z" with Py(m) = 0 and H° (P, my),—
pdp) =0 (resp. H'*(P%, my, — pdy) =0), then Pp(m'") # 0
and H°(P'* m} —pdy,) = 0 (resp. H'™*(P'* mj} —pdy) = 0),
where mj, = my, — [myg, + lg] as in Def. 3.3.

Another choice for mj, is my + di. — [mi + l]x, implying
Py, # 0, but not preserving the zero cohomologies necessar-
ily. Lemmata 3.5, 3.6 imply

THEOREM 3.7. For any determinantal m € Z", define
vectors m',m"" € Z" as in Def. 3.3 which differ from m only
at the k-th coordinates, 1 < k < r, s.t. Py(m) = 0. Then
Pe(m') # 0, P.(m") # 0 and both m', m" are determinantal.

COROLLARY 3.8. For a determinantal m € Z" with
Pi.(m) = 0 for some k € {1,...,r}, we have 0 < my, <
dk(n+ 1) — 1l —1.

PROOF. Since mj,,m), define Py(m') # 0, P.(m") # 0,
we can apply Lem. 3.1. We use the lower bound with m)},
because mj < myr < mj,. Pr(m) =0 = di > i, so

my = mi—[me+ele > —ly = my > [me+l]e—l > 1=,

because [my, + lg]r > 1 by the proof of Lem. 3.4. If m; < 0,
for P(m) to be empty we need my + I < 0 & my < —lj
which contradicts the derived lower bound; so m; > 0. For
the upper bound,

m;c:mk—f-dk—[mk]k—lSdk(n+1)—1 =
mp Sdkn+[mk]k Sdk(n+1)—lk—1;

the latter follows from [m]r < dr — lx, (Lem. 3.4). (my +
le)/de < mn+1—(1/dr) < n+ 1 implies the inclusion of
the half-open interval in (0, + 1). The possible values for
my, form a non-empty set, since the lower bound is zero and
the upper bound is dx(n+ 1) — I —1 > dr — 1 > 0 since
dp > 1, >1. O

So, in fact, the real interval Py C (0,n + 1).

COROLLARY 3.9. For a determinantal m € Z" and k €
[1“], max{—dk, —lk} <mp <dp(n+1)—1 +min{dk — I, 0}.

This implies there is a finite number of vectors to be tested
in order to enumerate all possible determinantal m. This
could also be deduced from the fact that the dimension of
Ko(m) equals the degree of the resultant. Cor. 3.9 gives a
precise bound for the box in which to search algorithmically
for all determinantal m, including those that are “pure” in
the terminology of [18]. Our MAPLE implementation, along
with examples, is presented in Sect. 7. If we take, e.g.,
m = (4,3) and £k =1 in Ex. 3.2, the bound 23 -1-1=4
given by the Cor. 3.8 is attained. The bounds in Lem. 3.1
can also be attained (see Ex. 4.5 continued in Sect. 7) hence
Cor. 3.9 is tight. It is possible that some combination of the
coordinates of m restricts the search space.

4. PURE SYLVESTER-TYPE FORMULAE

This section constructs rectangular matrices that have at
least one maximal minor which is a nontrivial multiple of
the sparse resultant. The matrices of interest are of pure
Sylvester-type. This implies the complex is:

<o Ki(m) = H*(X,m —d) = Ko(m) = H*(X,m) = 0

In particular, my > 0 for all £k = 1,...,r. In general
K>(m) # 0; K2(m) = 0 implies a determinantal formula,
which happens when the defects vanish [15].

To have a Sylvester-type formula, a necessary condition is
that H°(X,m —pd) # 0 for v = 0,1 and p — v = 0. This
implies H(P"*, my — vdy,) # 0 for all k € {1,...,7}. More-
over, we must have H?7"(X,m—pd) =0forp—v =>._,1;
where .J is any subset satisfying 0 #.J C {1,...,r}.

jEJ

LEMMA 4.1. Ifm #m' € Z" yield a Sylvester-type matric
and mj, > my, for all k € {1,...,r} then, the Sylvester
matriz associated to m’ is strictly greater than the Sylvester
matric associated to m.

DEFINITION 4.2. For each choice of a permutation m :
{1,...,7} — {1,...,r}, define the degree vector m™ by

mE = (1 + Y e lj) do—le, k=1,...,r

These are defined in [15], yielding determinantal Sylvester
formulae when all defects are zero.

LEMMA 4.3. If m € Z" yields a Sylvester-type matriz,
then i € {1,...,r} s.t. Vo : [r] = [r] verifying w(i) = 1 it
holds that m; > mT. Moreover HO(]P’”, m; —pd;) # 0 where
P<1+3 (yeslis for any subset J : O #J C{2,...,r}.

THEOREM 4.4. A degree vector m € Z" gives a Sylvester-
type matriz iff there exists a permutation m s.t. mj > m]
for 5 =1,...,r. Moreover, the smallest Sylvester matriz is
attained among the vectors m™.

PROOF. Consider the necessary condition that Ki(m) =
H°(X,m — d). We prove the forward direction by induc-
tion on kK = 1,...,r: The base case k¥ = 1 was proven in
Lem. 4.3. The inductive hypothesis for k € {1,...,r — 1}



specifies which cohomologies vanish and which not, where
my > mj, m(u) < k. In particular, for all subsets J s.t.

w#JC{l,...,’f’}\{l,...,k},p:1+ Z lJ’p0:p+lU)

n(j)eT

for some v : 7w(v) < k, we assume:
H'™ (]P’l“,mu —podu) -0, H° (]P’l“,mu —pdu) £0. (2)

For the inductive step, we exploit the necessary condition
that HP"'(m —pd) = 0 for p = 1 + Ygysk li- By (2),
3 HY (Pli,mi —pdi) =0< m; > pdi —l; = m] where
we define w(i) = k + 1. To complete the step, we show
HO (Pl“,mu—pdu) # 0 where 7(u) < k+1,p =1+
> x(jyes li- and any subset J s.t. 0 # J C {k+2,...,r}. The
non-vanishing of the cohomology is equivalent to m, > pd,.
It suffices to prove mj > di(1+ 3__ (;)5p41 ;). By defini-
tion, this reduces to —I; + d;l; > 0 < d; > 1. The converse
direction follows from analogous arguments as above. The
claim on minimality follows from Lem. 4.1. [

This gives an algorithm for finding the minimal Sylvester
formulae by testing at most r! vectors m™, which is imple-
mented in MAPLE (Sect. 7). To actually obtain the square
submatrix whose determinant is divisible by the sparse re-
sultant, it suffices to execute a rank test. These matrices
exhibit quasi-Toeplitz structure, implying that asymptotic
complexity is quasi-quadratic in the matrix dimension [9].
Observe Py(m™) # 0 because IJp € Z:p =143 ;o 1)l
s.t. mg < dip = my + i, for all k.

ExaMPLE 4.5. Let [ = (2,1,1), d = (2,2,2); the degree
of the resultant is 960. Let ¢ = 7! be the permutation
inverse to 7; then m[ ., := (1 + Zj>kl0(j)) do k) — lo(r)-
Here is a list of the 6 = 3! degree vectors m”™, among which
we find the smallest Sylvester matrix of row dimension 1080,
whereas the sparse resultant’s degree is 960. Also shown
are the permutations o and the corresponding matrix di-
mensions. The symmetry between the last two polynomials
makes certain dimensions appear twice.

m™= (85,3) o= 1,2,3 1080 x 1120

(8,3,5) 1,3,2 1080 x 1120
(6,9,3) 2,1,3 1120 x 1200
(4,9,7) 2,3,1 1200 x 1440
(6,3,9) 3,1,2 1120 x 1200
(4,7,9) 3,2,1 1200 x 1440

Our MAPLE program, discussed in Sect. 7, enumerates 81
purely Sylvester matrices, none of which is determinan-
tal. All Sylvester matrices not shown here have dimensions
1260 x 1400 or larger. a

The map Ki(m) — Ko(m) is surjective, i.e., the matrix has
at least as many columns as rows. In searching for a minimal
formula, we should reduce dim Ko(m), i.e., the number of
rows, since this defines the degree of the extraneous factor in
the determinant. It is an open question whether dim Ko(m)
reduces iff dim K (m) reduces. In certain system solving
applications, the extraneous factor simply leads to a super-
set of the common isolated roots, so it poses no limitation.

Even if it vanishes identically, perturbation techniques yield
a nontrivial projection operator [5].

5. PURE BEZOUT-TYPE FORMULAE
DeFINITION 5.1. A Weyman complez is of pure Bézout

type if K_1(m) = 0,K1(m) = H'" (X m — (n+ 1)d)

and Ko(m) = H°(m).

Weyman complexes of pure Bézout type correspond to
generically surjective maps

H'" P4 (X m — (n 4 1)d) — H°(m) ®3)

s.t. any maximal minor is a nontrivial multiple of the multi-
homogeneous resultant. In fact, we shall show that the only
possible such formulae are determinantal (i.e. Kz(m) = 0).
We shall exhibit the corresponding differential in terms of
the Bezoutian and characterize the possible degree vectors.
We show that there exists a pure Bézout-type formula iff
there exists a pure Sylvester formula. Remark that the di-
mension of the matrix with pure Bézout coefficients equals
the dimension of the Sylvester matrix divided by n+1. Now
we can generalize results in [3, 14] (cf. Sect. 1.2).

THEOREM b5.2. There erists a determinantal formula of
pure Bézout type iff for all k either I, =1 ordy, =1, i.e. all
defects vanish.

PROOF. Recall that for each p there exists at most one
integer j H’ (X,m —pd) # 0 [18]. In fact, let A(p) :=
{k : mp —pd —k < =l} and B(p) :={k : my — pd, > 0}.
Denote j := 3 c4(p) lk- Then HY' (X,m —pd) = 0 for all
§' # jand H (X,m —pd) #0iff A(p) UB(p)={1,...,7}.

There exists a pure Bézout-like formula for some degree vec-
tor m iff Vp # 0,n + 1 all cohomologies of m — pd vanish.
Then, for any p € {1,...,1},3k : k ¢ A(p) U B(p), i.e,
p € Py(m). Then, {1,...,1} C U;_; Pr(m) and so

r ™ lk
h4...+10 < P, < 2k,
14+ _;# k(m)_;(dk

Since I, > u—’;] for all k, we deduce that [, = |'(li—’;'|, and this
can only happen iff I, =1lord, =1. O

Let us study degree vectors yielding pure Bézout formulae.

DEFINITION 5.3. For each choice of a permutation w :
{1,...,r} = {1,...,r}, let us define a degree vector

> b

m(j)2m(k)

my, = —lj +dy k=1,...,r

(3) implies H'9 (P4, m; — (n+ 1)d;) # 0, H® (P',m;) # 0.

LEMMA 5.4. The existence of any pure Bézout formula
implies 0 < m; < (n+ 1)d; —1;, for all 5.

In fact, the m™ of Def. 5.3 satisfy these constraints V.



LEMMA 5.5. Ifm € Z" yields a pure Bézout-type compler,
then 3i € {1,...,r} s.t. for any permutation = : [r] — [r]
with w(i) =1, m; > m} and

HY (Pli, mi— (g +1; + I/)di) -0, v=0,—1,

z) #£0, q=> 1

JEJ

HC (Pli,mi —qd
forany J C{1,...,r}\ {i}, J #0.

LEMMA 5.6. Ifm € Z" yields a pure Bézout-type compler,
it 1s possible to find a permutation w s.t. the degree vector
m verifies m; > m], Vi.

THEOREM b5.7. A pure Bézout and generically surjective
formula exists for some vector m iff it equals m™ of Def. 5.3,
for some permutation w, and all defects are zero.

The condition K»>(m) = 0, which yields a square matrix, is
obtained by the hypothesis of a pure Bézout and generically
surjective formula; i.e., there is no rectangular surjective
pure Bézout formula.

COROLLARY 5.8. If a generically surjective formula is of
pure Bézout type, then it is determinantal. Furthermore, for
any permutation T, the matriz is of the same dimension, i.e.
dim Ko(m) = deg R/(n + 1).

5.1 Explicit Bézout-type formulae
DEFINITION 5.9. For any permutation m : [r] — [r], de-
fine permutation 7' : [r] = [r] by 7' (i) = r + 1 — w(3).

LEMMA 5.10. Assuming all defects are zero, m™ +m™ =
p for any permutation w : [r] — [r], where p € N is the
critical vector of Def. 1.2.

Denote by z; (resp. z;;) the i-th variable group (resp. the
j-th variable in the group), i € [r],7 = 0,...,l;. Introduce
r new groups of variables y; with the same cardinalities and
denote by y;; their variables.

Given a permutation 7, let the associated Bezoutian be the
polynomial B™(z,y) obtained as follows: First dehomoge-
nize the polynomials by setting z;0o = 1,4 = 1,...,r; the
obtained polynomials are denoted by fo,..., fn. Second,
construct the (n + 1) x (n + 1) matrix with j-th column
corresponding to polynomial f;, j =0,...,[, and whose z;;
variables are gradually substituted, in successive rows, by
each respective y;; variable. This construction is named af-
ter Bézout or Dixon and is well-known in the literature, e.g.
[1, 8]. A general entry is of the form

fj(yo'(l)7-"ayo'(kfl)ayo'(k)h'"ayo'(k)h (4)
Lo (k)(t+1)s-- > xo’(k)l,(k) sy Lo (k1)) xo’(r))
where 0 ;=71 k=0,...,r,t =1,...,l;. There is a single

first row for k = 0, containing all the polynomials in the z;
variables, whereas the last row has the same polynomials

with all variables substituted by the y;;. All intermediate
rows contain the polynomials in a subset of the x;; variables,
the rest having been substituted by each corresponding y;;.
The number of rows is 1+Zj€[r] l; = 1+n. Lastly, in order
to obtain B”(z,y), we divide the matrix determinant by

ol
[T1I@i =y (5)

i=1j=1

ExampPLE 5.11. Let I = (1,2),d = (2,1). If 7 =
(12), 7' = (21), then m™ = (5,0),m™ = (1,1). For
both degree vectors, the matrix dimension is 6. To obtain
B™(z,y) we construct a 4 x4 matrix whose j-th column con-
tains fj (w11, x2), fi(yi1,22), fj(y11,y21, T22), fi(y11,92),5 =
0,...,3. Then B™(z,y) contains the following monomials
in the x; and y; variables respectively, 6 in each set of vari-
ables: 1,21, x21,T22,T1221, 1222, 1,y1,yf,yf,y‘f,yf. So the
final matrix is indeed square of dimension 6. O

LEMMA 5.12. Let B™(z,y) = Y bapz®y”’ where a =
(aij),ﬁ = ([81]) ezZ" i=1,...,r,j=1,...,l;. Set a; =

j=1,...,1; &ij> Bi = Zj:l,...,li Bij, Ya,B. Then, 0 < a; <
mF,0< B <mF and 0 < a; + B; <pi,i=1,...,r.

For generic polynomials, the upper bounds of «;, 5; are at-
tained. The lemma thus gives tight bounds on the support
of the Bezoutian.

THEOREM 5.13. Assume all defects are zero and B™ (x,y)
is defined as above. For any m, (bap) is a square matriz of
dimension

(n+1)

Furthermore, det(bag) = R(fo,. .., fn)-

PROOF. First, show that (bag) is square of the desired
size: But the dimensions are given by the number of expo-
nent vectors a, 3 bounded by Lem. 5.12 which are exactly
dim Ko(m”l),dimKo(m") respectively. Both m™,m™ are
determinantal, hence both of these numbers are equal to
deg R/(n+ 1), by Thm. 5.7 and Cor. 5.8. R(fo,..., fr) di-
vides every nonzero maximal minor of the matrix (bsp); cf.
[1], [8, thm 3.13]. Since any nonzero proper minor has de-
gree < deg R, the determinant of the matrix (b ) is nonzero
and equals the resultant. [

6. EXAMPLE: A HYBRID DETERMINAN-

TAL FORMULA

Assume | = (3,2),d = (2,3). We present explicit formulae
which can be extrapolated in general, giving an answer to
the problem stated in [18, p. 578]. We plan to carry this ex-
tensively in a future work, but we include here the example
as a hint for the interested reader. Our program enumerates
30 determinantal vectors m, with minimal matrix dimen-
sion 1320 achieved at m = (6,3) and (2,12). In both cases,
P>(m) = 0, whereas P;(6,3) = {4} and Pi(2,12) = {2}.



This shows that the minimum matrix dimension may occur
for some empty Py, contrary to what one may think.

Moreover, the degree of the sparse resultant is 6(3”?2) 2332 =
4320. Since 1320 does not divide 4320, the minimal matrix
is not of pure Bézout type; it is not of pure Sylvester type
either. To specify the cohomologies and the linear maps that
make the matrix formula explicit we compute, for degree
vector m = (6,3) and p = 1, ..., 6 the different values of m—
de (47 0)7 (27 _3)7 (07 _6)7 (_27 _9)7 (_47 _12)7 (_67 _15)'
The complex becomes Ko =0 - K; - Ko - K_1 = 0,
with nonzero part

24,000 @ B%(0,-6)8) 0 H*(—6, -15)(8)
- H°(6,3)0) @ H2(2,-3)() @ H? (4, -12)(5),

where we omitted the reference to the space X = P? x P?
in the notation of the cohomologies. Then dim K; = 210 +
200 4+ 910 = 1320 = 840 + 150 + 330 = dim Ky. By a slight
abuse of notation, let d, g stand for the restriction of the
above map to HY — HP. Then 802 = do5 = da5 = 0 by [18,
prop. 2.5] and it suffices to study the maps below, of which
the first 3 are of pure Sylvester type by [18, prop. 2.6] and
the last 3 are of pure Bézout type as those of Sect. 5. These
maps can be simplified using the dual cohomologies:

HY (P, my, —pdi) = H* ™ (P'*, (pr —mi) — (n+1—p)d)",

where p is the critical vector of Def. 1.2. So, we have maps

800 : H°(4,0)° — H°(6,3)

80 (H°(0) ® H°(3)") () - (H°(2) ® HO(0)*)()
55 H°(2,12)* — (H°(0,9)")°

d20 - (H°(0) ® H°(3)")(8) — HO(6,3)

50 : H°(2,12)* — H°(6,3)

J52 : H(2,12)° — (H°(2,0)")()

The resultant matrix (of the previous map in the natural
monomial bases) has the following aspect, indicated by the
row and column dimensions:

840 150 330
210 [500 0 0 ] [ Seo 0 0 ]
220 dap 22 O =1 B} 22 O
910 [ 050 052 55 J [ Bso B S%s J

where Sij,Bij,ij’“ stand for pure Sylvester and Bézout
blocks, the latter coming from a Bezoutian with respect to
variables z;, for k = 1,2, and ST represents a transposed
Sylvester matrix, corresponding to the dual of the Sylvester
map H(0,9)° — H°(2,12).

Let us take a closer look at d22, which denotes both the map
and the corresponding matrix. Let « € N' | 8 € N2 be the
degree vectors of the elements of H°(2), H°(3)* respectively,
thus |o| < 2,|8| <3. Let I,J C {0,...,5} || =3,|J| =2
express the chosen polynomials according to the homology
exponents. Then the entries are given by

0, if J ¢ I,

a By _
Oo2(2t ®Ty,1057) = { coef(fy,) of z¢al if T\ J = {k},

where Ty € H°(0)*, 5% are elements of the respective dual
bases of monomials. Now take the Bézout maps: The

routine

function |

allDetVecs | enumerate all determinantal formulae

allsums compute all possible sums of the [;’s adding
toge {0, . 72::1 ll}

coHzero test whether H?(m — pd) vanishes

coHdim compute the dimension of H?(m — pd)

dimKv compute the dimension of K, i.e. of the
corresponding matrix

findBez find all m-vectors yielding a pure Bézout-
type formula; may choose to consider only
determinantal formulae

findSyl find all m-vectors yielding a pure Sylvester-
type formula

hasdeterm | test whether a determinantal formula ex-

ists

Table 1: The main functionalities of our software.

matrix entries are given in (4) for ¢ = (2,1): the entry
(i,7), i,j € {0,...,5} contains fj(z"), ..., 79 6=,
.,y(5)), where each z is a leading subsequence of z1,
T12, T13, T21, T22; similarly with the new variables y. The
degree of the determinant, i.e. the Bezoutian, is 6,3,2,12
in x1,x2,y1,y> respectively and these coefficients fill in the
matrix Bsg. For the Bézout block Bfj, consider “partial”
Bezoutians defined from the 6 polynomials with the excep-
tion of those indexed in J, where J, I are as above. Only
the z; variables are substituted by new ones, thus yielding
a 4 x 4 matrix. For B3, take all polynomials indexed in
I and develop the Bezoutian with new variables y» from a
3 x 3 matrix. Hence the entries of the Bézout blocks have,
respectively, degree 6,4, 3 in the coefficients of the f;.

7. IMPLEMENTATION

We have implemented on MAPLE V routines for the above
operations, including those in Table 1. They are avail-
able in file mhomo.mpl on http://www-sop.inria.fr/galaad/-
logiciels/emiris/soft_alg.html and illustrated below.

ExAMPLE 3.2 (CoNT'D) Let m = (4,3):
> Ns:=vector([1,2]): Ds:=vector([2,3]):
> summs:=allsums (Ns) :
> hasdeterm(Ns,Ds,vector([4,3]),summs);
true
dimKv (Ns,Ds,vector([4,3]),summs,1);
96
dimKv (Ns,Ds,vector([4,3]),summs,0);
96

\%

\%

O

ExXAMPLE 4.5 (CoNT’D) The MAPLE session first computes
all 81 pure Sylvester formula by searching the appropriate
range of 246 vectors. The smallest formulae are shown.
> Ns:=vector([2,1,1]) :Ds:=vector([2,2,2]):
> allSyl:=findSyl(Ns,Ds):
Search of degree vecs from [4,3,3] to [8,9,9].
First array [4,7,9]: dimK1=1440, dimK0=1200,
dimK(-1)=0(should be 0).

#pure-Sylvester degree vectors= 81
tried 246, got 81 pure-Sylv formulae [m,dimK1,dimKO]:



> sort(convert(},list) ,sort_fnc);

(8, 5, 3, 1120, 1080], [8, 3, 5, 1120, 1080],
6, 9, 3, 1200, 1120], [6, 3, 9, 1200, 1120],
[4, 9, 7, 1440, 1200], [4, 7, 9, 1440, 1200],
8, 6, 3, 1400, 1260], [8, 3, 6, 1400, 1260], ... ]

> allDetVecs(Ns,Ds):

> allmsrtd := sort(convert(},list),sort_fnc);
From, [—4, =3, =3], to, [9, 10, 10], start at, [-4, —3, —3]
Tested 1452 m-vectors: assuming Pk’s nonempty.

Found 488 det’l m-vecs, listed with matrix dim:

allmsrtd = [[6,3,1, 224], [6,1, 3, 224], [1,7,5, 224],
[1,5,7, 224], [3,7,1, 240], [4,7,1, 240], [3,1,7, 240],
[4,1,7, 240], [6,3,0, 262], [6,0,3, 262], [1,8, 5, 262],
[1,5,8, 262], ...]

> for i from 1 to nops( allmsrtd ) do print (
allmsrtd[i] ,Pksets (Ns,Ds,vector([allmsrtd[i] [1],
allmsrtd[i][2] ,allmsrtd[i][3]]))): od:

[67 37 17 224]7 [[47 4]7 [27 2]7 [17 1]]
[6, 1, 3, 224], [[4, 4], [1, 1], [2, 2]]
(1, 7,5, 224], [[1, 1], [4, 4], [3, 3]]
[17 57 77 224]7 [[17 1]7 [37 3]7 [47 4]]
3, 7, 1, 240], [[2, 2], [4, 4], [1, 1]]
[47 77 17 240]7 [[37 3]7 [47 4]7 [17 1]]
3, 1,7, 240], [[2, 2], [1, 1], [4, 4]]
(4, 1,7, 240], [[3, 3], [1, 1], [4, 4]]
[67 37 07 2 2]7 [[47 4]7 [27 2]7 [07 O—INT7 0]]

The last 2 commands find all 488 determinantal vectors.
The smallest formulae are indicated (the minimum dimen-
sion is 224) and for some we report the P’s. No determinan-
tal formulae is pure Sylvester. Notice that the assumption
of empty sets Py is used only in order to bound the search,
but within the appropriate range empty Pj’s are considered,
so no valid degree vector is missed. This is illustrated by the
last P; = () marked NO_INT. O

ExAMPLE 5.11 (CoNT’D) The only pure Bézout formulae
are the 2 determinantal formulae of Ex. 5.11, for which we
have m™ = (5,0),m"’ =(1,1).
> Ns:=vector([1,2]) :Ds:=vector([2,1]):
> summs:=allsums (Ns) :
> findBez(Ns,Ds,true); #not only determinantal

low — upper bounds, 1st candidate :, [0, 0], [6, 1], [0, O]
Searched degree m-vecs for ANY pure Bezout formula.
Tested 15, found 2 pure-Bezout [m,dimKO,dimK1]:

{[57 07 6) 6]) [17 17 6) 6]}

The search examined 15 degree vectors between the shown
bounds. It is clear that both vectors are determinantal be-
cause the matrix dimensions are for both 6 x 6. O

8. FURTHER WORK

Our results can be generalized to polynomials with scaled
supports or with a different degree d per polynomial. We
plan to complete the description of hybrid determinantal
formulae. Another question is whether the vectors m’, m”
of Def. 3.3 lead to smaller or larger matrices than m. Notice
that certain cohomologies, which were nonzero for m, may
vanish for m’ or m”. A problem related to the Sylvester
formulae calls for improved algorithms for constraining the
search of m, and for identifying in advance the nonzero max-
imal minor in the matrix, which leads to finding a determi-
nant with exact degree in some polynomial. We are working
on finding an explicit generic basis of the quotient by n po-
lynomials of given degree d € Z".
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APPENDIX

ProoF OoF LEM. 3.1 By [18, lem. 3.3(b)], P, C [0,n + 1] =
my/dr > —1 and (my + lg)/d;, > 0, which imply the lower
bound. Also, (mg+1x)/dr < n+2 < my < (n+2)d, — Il —1 and
my/dr < n+1< myg < (n+1)dg —1 yield the upper bound. No-
tice that the possible values for my form a non-empty set, since
the 2 bounds are negative and positive respectively. O

PRrOOF OF LEM. 3.4 Let us write my = jdy + [mg]x for j € Z so
%: :j+7[n;2]k. P.=0= Lkd:lk <j+1=gdp+[mele+l <
(4 + Ddy, so [myp < dp —lp =1 = lp < —[mplp +dp — 1
and thus 1 < dj — [mg]r — 1. Second, [my + lx]r > 1 because
[mp, + ]k = 0= (mg +1g)/dyp € Pi(m). o

PROOF OF LEM. 3.5 Write my, = jdi + [mg]r for some integer
j € Z. To prove P(m') # 0 we show j + 1 € Pi(m'), i.e.
m/ m/, + Iy,
k : k
— < j+1 <
dp. J - dp,
jdp +di — 1 < (]‘l‘l)dk <jgdg +dp — 1+ 1

G my < (G4 D)d <mj + 1 &

which is clearly true since 1 < Iy, H'% (P'k, mj, —pdy) = 0 < myp+
I, > pdy, hence m), + I, > pdj, because m}, > my,. HO(Pl,my, —
pdy) =0 < my < pdy so j <p—1. Hence, my — [my]x = jdp <
(p—1)dy, & my—[my]r+di < pdy which is the desired conclusion.
By [18], P, (m') C [0,n + 1] from which j € {-1,0,...,1}. O

PROOF OF LEM. 3.6 Write my + I, = jdg + [my + lg] for some
integer j > 0. To prove Pj(m}/) # 0 we show it contains j, i.e.,

myg — [my + ]k <j< my, — [mg + lelp + I o
di - dy,

my — [mp + e <Jde <mp —[mp + ]k + e

< gdg =l < gdg < jdy,

which is clearly true since 0 < l. HO(mj — pdi) = 0 & my, <
pdy, = m}! < pdy, because m} < my, hence H%(m} — pdy) = 0.
H'% (my, — pdy) = 0 & my + 1, > pdy, then j > p. Hence
my + I, — [mg + U]k > pdy which finishes the proof. By [18],
Pp(m) C [0,n + 1] hence j € {0,...,n+ 1}. O

PROOF OF LEM. 4.1 We must show dim Ko(m') > dim Ko(m),
i.e. dimHO(m;c — pdy) > dim H®(my, — pdy) for k € {1,...,7},
i.e. (m;c 7”,'1’““’“)1c > (" _pld’“"'lk)k. The cohomology is nonzero,
thus m;c — pdy, > my — pdy, > 0 and this implies the desired
inequality because (sﬁl’“)k = (s+lg) -+ - (s+1)/l;!. The inequality
is strict since 3k : m}, > my,. O

PRrROOF OF LEM. 4.3 For p = n + 1,v = 1, a necessary condition
is that H™(X,m — (n+ 1)d) = 0. Hence 3 i € [r] : H' (P, m; —
(n+1)d;) =0 m; — (n+ 1)d; > —l; & m; > m7 by choosing
7(i) = 1. For any p as in the statement, HO(P!i,m; — pd;) #
0 < m; > pd;. Since m; — (n + 1)d; > —I; it suffices to prove
(n+1Ddi —li > di(1432;4;1;) > dip. The latter inequality is
obvious Vp, whereas the former reduces to [;d; > [; which holds
since d; > 1. O

PrOOF OF LEM. 5.6 We use induction; the base case follows from
Lem. 5.5. The inductive hypothesis, for & € {1,...,r — 1}, is:
wcCc{1,...,r} Ul =k, st w(u) <k, my >mT,Vu € U and

Hu ([P’l",mu —(q+ L +1/)du) =0, v=0,-1, (6)
H° (Pluvmu_qdu)¢0, q:le’
JjEeJ

vJ C {l,...,r}\ U,J # 0. Now the inductive step: The hy-
pothesis on Ko implies HP(X,m — pd) = 0 for p = ngUlj'
Considering the inequality in (6) for ¢ = p, 3¢ € [r] \ U s.t.

Hb (]P’li,mi 7pdi) =0 m; +1; > pd; i.e. m; > mT for
w(i) = k + 1 because j € U < =w(j) > k + 1. Tt suffices now
to extend (6) for ¢ = 37, I; where @ # J' C [r]\ (U U {i}).
First, m; + l; > pd; > (¢’ + l;)d; implies the equations below.
Second, m; > —Il; + pd; = (p — li)di -+ li(di — 1) > q'di yields the
inequality, so

Hbi (]P’li,mi — (¢ +1; + u)di) =0, v=0,-1.
HO (Pli,mi - q'di) £0.

m satisfies the hypothesis K_1 = 0 by (7) for v = —1 because ev-
ery summand in K_; contains some cohomology as in (7). Since
p>0=qg=p—v >1nosummand has only zero cohomolo-
gies. By Lem. 5.4 and (7) for v = 0, m gives Ko(m) = H°(X,m)
because all H!i = 0. O

PROOF OF THM. 5.7 It suffices to consider K1 = H"*(m — (n +
1)d); it is nonzero by Lem. 5.4. We prove by induction that
m = m7™ by using the fact that all other summands in (1) for
K vanish. For H°(m — d) to vanish, there must exist i € [r] :
HO(PLi,m; —d;) = 0 & m; < d;. Hence we need to define 7 (i) =
r because 7T(Z) <r= mz" > 7li+di(li +1) =d; +li(di — 1) > d;.
Moreover, m7 = —I; + d;l; < d; < J; = 0 by Lem. 1.3.

There is a unique integer in [m[, d;) because mI +1 > d; < —l;+
dil; +1>d; & (li 71)((11' 71) > 0. Hencem; =d; —1 < di(q+1)
for any g > 0, therefore H°(m; — (¢+1)d;) = 0. Furthermore, for
q> 1, Hli(mi —(14+qd)Z0emi+L; <(g+1)di &l —1<
qd; which holds. This proves the inductive basis. The inductive
hypothesis is: YVu € U C [r], where |U| = k, m(u) > r — k, then
0y = 0, my =m] and

HO®Mmy —(1+ > 1j)dy) = 0% H (my — (14 1j)du),

() <m(u) jes
(7)

VYJ : U C J C [r]. For the inductive step, consider that
HI(X,m — (1 + q)d) must vanish for ¢ = >Z.; ;. None of its
summand cohomologies H'v (my — (1 + q)dy,) vanish due to the
last inequality. So 3i : HO(m; — (1+q)d;) = 0 & m; < (1+q)d;.

Hence (i) = r — k so that m; = m[ = —I; + d; Zw(j)Zr—k l; <
(14 q)d; & —l; +dil; <d; < 6 =0 by Lem. 1.3. No larger m;
works because m[ is the maximum integer strictly smaller than
(1 4+ ¢)di. And 7w(i) < r — k would make m; too large. Now
extend the inequality (7) to J’ where (U U {i}) C J’ and observe
mf < d; ZT\'(j)ZT—k lj < di(l + Zje-]’ l]‘).

The hypothesis is proven YU C [r], including the case |U| = r.
For the converse, assume 37 : m = m™ and all defects vanish.
Then Ky, K satisfy all conditions for a pure Bézout formula.
Furthermore, K_; = 0, hence the formula is generically surjec-
tive. m|

PROOF OF LEM. 5.10 mT +mf’ =d;(n+1;) — 2l;, Vi because the
sum in the parenthesis includes {l; : 7(j) > w(i)} U {l; : 7' (j) >
7'(i)}, and latter set is {I; : 7(j) < 7(i)}. So mF +m] = d;l; —
litpi—di+1=pi+di(li—1)=(li—1) = pi +(li —=1)(di —1) = p;
because of the zero defects. O

PrROOF OF LEM. 5.12 By Lem. 5.10 it suffices to bound «y,f3;.
But «; is the degree of the x; in the determinant decreased by
l; in order to account for the division by (5). The former equals
the product of d; with the number of rows where an x;; variable
appears for any j € [1,l;]. These are the first row, the rows
where y; are introduced for j € {o(1),...,0(k—1)} s.t. o(k) =i,
and another l; — 1 rows when o(k) = i. The condition on j :
m(j) < m(4) is equivalent to r + 1 — w(j) > r + 1 — n(¢), hence
a; < —lj+d; ZW’(j)>7r’(i) l; = m;” . Similarly, we prove the upper
bound on 3;. The rows containing y;; for some j € [1,1;] are those
where j € {o(k+1),...,0(r)} : o(k) = i, another {; —1 rows when
o(k) = ¢, and the last row. Now, 7(j) > k+1 > k = «(i), so
Bi < —l; +d; ZT\'(j)>T\'(i) lj = mz" Clearly a;,8; > 0. [m]



